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 A B S T R A C T

Graph Neural Networks (GNNs) provide state-of-the-art graph learning performance, but their lack of trans-
parency hinders our ability to understand and trust them, ultimately limiting the areas where they can be 
applied. Many methods exist to explain individual predictions made by GNNs, but there are fewer ways to 
gain more general insight into the patterns they have been trained to identify. Most existing methods for 
model-level GNN explanations attempt to generate graphs that exemplify these patterns, but the discreteness 
of graphs and the nonlinearity of deep GNNs make finding such graphs difficult. In this paper, we formulate the 
search for an explanatory graph as a mixed-integer programming (MIP) problem, in which decision variables 
specify the explanation graph and the objective function represents the quality of the graph as an explanation 
for a GNN’s predictions of an entire class in the dataset. This approach, which we call MIPExplainer, allows us 
to directly optimize over the discrete input space and find globally optimal solutions with a minimal number 
of hyperparameters. MIPExplainer outperforms existing methods in finding accurate and stable explanations 
on both synthetic and real-world datasets. Code is available at https://github.com/blake-gaines/MIPExplainer.
1. Introduction

Graph neural networks (GNNs), such as graph convolutional net-
works (GCN) [1], GraphSAGE networks [2], and graph attention net-
works (GAT) [3], provide a family of powerful tools for modeling 
graphs that learn from both the features contained in nodes and edges 
and the structure of the graph itself. However, the limited explainability 
of GNN prediction makes it impossible to justify the use of GNNs in 
applications where trust and safety are important, and there is no 
way to extract useful information from them. These problems have 
motivated a significant amount of research into techniques for GNN 
explainability.

Research on explainable deep learning proceeds along two lines. 
One line is to develop intrinsically explainable methods, which mod-
ify standard neural networks or the training process so that final 
models naturally expose information about the importance and inter-
action of input features. Several proposed GNN architectures aim to 
achieve inherent explainability, such as ProtGNN [4], GIB [5], and 
GraphChef [6]. The disadvantage of this approach is that changing 
the GNN itself to enforce explainability restricts users’ choice of GNN 
architectures and does not allow for the explanation of already-trained 
GNNs. As a result, there is great interest in the second line of research, 
post-hoc explainability, which aims to interpret networks that have 
already been trained. Post-hoc instance-level explanation, which aims 
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to explain the reasoning behind individual predictions, has been exten-
sively explored for GNNs (see surveys from [7–9]), but fewer methods 
exist to explain the overall patterns used by GNNs to differentiate 
classes.

1.1. Related work

GNN explanation
At least six categories of instance-level GNN explanations have been 

proposed so far, including those based on gradients/features [10,11], 
perturbations [12–16], surrogates [17], generation [13,18], decom-
position [19–21], and counterfactuals [20]. These methods do not 
immediately provide insights into the overall patterns a GNN has 
identified, but it is possible to consolidate instance-level explanations 
to reveal model-level patterns. For example, we can employ purely 
statistical methods to determine whether there are common subgraphs 
shared by a significant portion of the individual explanations. A more 
recent technique, GLGExplainer [22], finds smaller components of 
the extracted instance explanations that can be used to build logical 
expressions consistent with the overall GNN’s predictions. However, 
these methods that combine instance-level explanations may be limited 
by the scope of the training instances, and can be influenced by bias in 
the dataset. Generating explanations directly from the GNN model is 
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more faithful, and provides deeper insights into the degree of bias in 
the model itself.

Our proposed method, like many methods for explaining GNNs at 
the model level, focuses on generating graphs that reflect the represen-
tative patterns of individual classes differentiated by a GNN classifier. 
PAGE [23], GCExplainer [24], MAGE [25], and the method described 
in [26] are global explanation methods that focus on explaining GNNs 
via concept generation, an approach that only considers graphs and 
subgraphs from the training data. For example, PAGE begins by clus-
tering training graphs in each class based on the features extracted 
by the message-passing layers of the GNN (i.e. the training graph 
embeddings), and then finds common subgraphs within the graphs 
comprising each cluster. It then applies the GNN to these subgraphs and 
finds the ones that maximize their respective graph’s class probability 
as the class-level explanations. The other methods listed above also 
follow a similar procedure, searching for subgraphs of the training 
graphs using criteria based on their embeddings from the GNN. Among 
these methods, we choose to compare with PAGE, because the criteria 
it uses to select representative subgraphs is the most comparable to 
ours. On the other hand, XGNN [27] is a well-established approach 
that explains the model by finding graphs that maximize the model 
output for a target class. It serves as the baseline in several recent 
papers that focus on similar objectives [22,23,28–30]. XGNN trains a 
second neural network by reinforcement learning to generate graphs 
that obey explicit, hand-crafted generation rules (e.g. a maximum 
node degree) while maximizing the original GNN’s prediction for a 
specific class. Similarly, D4Explainer [30] trains a separate denoising 
model and generates explanation graphs through a diffusion process. 
GNNInterpreter [29], GDM [31], and GraphEx [32] avoid training a 
second neural network by assuming that the graphs in the dataset are 
sampled from underlying distributions parameterized by continuous 
latent parameters. In particular, GNNInterpreter defines an objective 
function similar to XGNN during training, maximizing a target class’s 
logit while penalizing the distance between the GNN’s embedding of 
the generated graph and the mean embedding of the training data 
to keep explanations in-distribution, and learns parameters through 
Monte Carlo gradient estimation. GraphEx follows a similar strategy to 
GNNInterpreter, but attempts to learn the conditional probabilities of 
graphs in the dataset given the classes predicted by the model. GDM 
minimizes the estimated maximum mean discrepancy between the 
distribution of embeddings of training graphs and the distribution of 
embeddings of the learned explanations, and also employs regularizers 
to keep the explanations in-distribution. KnowGNN [33] also learns the 
latent parameters of categorical distributions to extract graph features, 
but additionally trains a second neural network that learns to mask 
edges as part of generating explanations.

There are several common problems among existing approaches 
to model-level GNN explanation. First, they often have many hyper-
parameters (e.g. learning rate, regularizer weights) that can change 
the quality of generated explanations, and generating a high-quality 
explanation may require setting them within a specific range of val-
ues. Because there is no single metric to quantify global explana-
tion quality, the performance of these methods is mostly evaluated 
through visualization and manual inspection of the results. Therefore, 
it is impossible to objectively compare the results from different hy-
perparameter settings and determine which explanation to use, and 
performing hyperparameter optimization qualitatively is similarly dif-
ficult without prior knowledge of a ground-truth explanation. Second, 
all of the methods rely on stochastic gradient descent algorithms to 
optimize parameter values used to generate explanations. A stochastic 
optimization algorithm converges to a critical point only in expectation, 
so in individual runs it may stop anywhere within a large neighborhood 
of the desired optima. When a maximum number of iterations is set, 
the final explanation’s objective value might be far away from the 
globally optimal value. Thus, explanations generated in different runs 
with different starting values for the parameters vary significantly, 
2 
even with the same choices of hyperparameters. Third, these methods 
do not have theoretical guarantees of achieving optimality, or even 
bound the gap in optimization objective between their solution and an 
optimum. Due to their lack of algorithmic stability and their inability 
to guarantee solution quality, existing methods cannot explain a GNN 
in a consistent manner across multiple runs. This variability is unde-
sirable, because the distribution of generated explanations is unknown 
relative to the global optima for a given interpretation objective. As 
a result, it is questionable whether the generated explanations contain 
the information that the objective function was designed to extract. We 
argue that the degree of consistency among explanations generated in 
successive runs of an explanation method is an important measure of 
their performance, even though it does not directly measure the quality 
of the generated explanation graphs themselves.

Mixed-integer programming for deep neural networks
Mixed-integer programming (MIP) has been used to encode ReLU 

networks to solve verification problems [34–36], inverse design prob-
lems [37,38], and to generate instance-level explanations for ReLU 
networks [39]. MIP defines a constrained optimization problem where 
some of the decision variables must take integer values. MIP problems 
are commonly solved through branch-and-bound, where the original 
problem is decomposed into subproblems defined on partitions of the 
feasible solution set and solved recursively, creating a search tree. 
Note that for a maximization problem, removing any constraints and 
solving the relaxed problem will yield solutions that bound the original 
problem’s optimal solution from above. Thus, an upper bound on 
any of the MIP subproblems can be found by relaxing the integrality 
constraints and solving the resulting system. Then, large subtrees can 
be pruned if the upper bound at the root node of the subtree is less than 
the objective value of a known solution, improving the tractability of 
the search.

The approach in [40] successfully encodes GCN and GraphSAGE 
layers into MIPs, but MIPs encoding larger GNNs often remain in-
tractable to solve, primarily due to the issue of symmetry. GNN layers 
are equivariant with respect to the ordering of the nodes in the graph, 
and permutation invariant pooling layers are generally used to make 
graph-level predictions. As a result, the worst-case number of possi-
ble representations for an optimal graph defined in terms of a node 
feature matrix and adjacency matrix grows exponentially with respect 
to the number of nodes in the graph. This creates practical problems 
when solving a GNN’s MIP using branch-and-bound, as any subtree 
containing an equivalent representation of the optimal solution cannot 
be pruned. This problem can be addressed by adding constraints to 
reduce the number of feasible solutions in the equivalence class of 
each graph, as described in [41]. Our proposed approach benefits from 
these works by combining existing formulations of GNN layers with 
symmetry breaking techniques, creating an explanation method that is 
both tractable and stable.

1.2. Main contributions

We propose a new explanation method based on MIP, which we 
call MIPExplainer, to find graph structures or subgraphs that explain 
GNN models from multiple perspectives. We design three novel objec-
tive functions to respectively discover subgraphs that the GNN model 
reports as the most representative of a class (reaching the highest class 
probability), the most difficult-to-classify (on the boundary between 
two classes), and contrastive class-specific explanations in a range of 
scenarios. We further propose a new quantitative metric for explanation 
methods to assess their stability by measuring the dissimilarity of the 
generated explanations across multiple runs. While any appropriate 
metric can be used to measure the (dis)similarity of these graphs [42], 
we employ graph edit distance [43], which is commonly used in inexact 
graph matching. MIPExplainer offers several benefits over existing 
approaches:



B.B. Gaines et al. Neurocomputing 639 (2025) 130214 
1. It directly optimizes over the discrete space of possible input 
graphs, without any restrictions on types of node and edge 
features. The only assumptions we make about the space of 
graphs are bounds on the number of nodes and the magnitude 
of node features, and we do not require any assumptions about 
the underlying distribution of the training data.

2. It has a minimal number of hyperparameters that influence 
the explanation, as only the number of nodes of the expla-
nation graph needs to be specified, and empirically generates 
recognizably in-distribution explanations without the need for 
additional regularization terms. This facilitates the application 
of our approach and mitigates the effects of bias when analyzing 
the results.

3. It can verify the optimality of results with respect to the expla-
nation objective. In cases where this is intractable, MIPExplainer 
can place an upper bound on the optimal solution, guaranteeing 
the quality of the generated explanation.

2. Our approach - MIPExplainer

Our model-level explanation seeks to optimize an input graph 𝐺 =
(𝑋,𝐴) with respect to some explanation objective defined in terms of 
the GNN’s output, where 𝑋 contains the 𝑑 attributes for each of 𝑁
graph nodes as row vectors and 𝐴 = (𝑎𝑖𝑗 ) represents the 𝑁 by 𝑁
adjacency matrix. Like XGNN, which searches for a graph to maximize 
the predicted probability of a certain class, and GNNInterpreter, which 
maximizes the logit of a certain class, we generate unweighted graphs 
where 𝐴 is binary adjacency matrix (𝑎𝑖𝑗 ∈ {0, 1}), so that 𝑎𝑖𝑗 = 1
indicates there is an edge between nodes 𝑖 and 𝑗, and 𝑋 is the node 
feature matrix where 𝑥𝑖𝑗 represents feature 𝑗 of node 𝑖. Let a GNN 
realize a function 𝑓𝑐 (𝐺, 𝜃) that maps 𝐺 to the (possibly unnormalized) 
probabilities of several classes indexed by 𝑐, where 𝜃 contains all 
trainable parameters in the GNN. To train a GNN, a set of graphs 
is given and 𝜃 needs to be determined, whereas in the explanation 
setting, 𝜃 has been fixed and we optimize 𝐺 = (𝑋,𝐴) in terms of an 
explainability objective, for example to maximize 𝑓𝑐 (𝐺, 𝜃).

To formulate the MIP, we examine the calculation performed by a 
multi-layer GNN. Each layer of the GNN imposes a set of constraints on 
𝑋 and 𝐴 in the MIP. Consider how node features are updated in the first 
GNN layer of a GraphSAGE model. Using the features of node 𝑖 in 𝐺, 
represented by the row vector 𝑥𝑖, and its neighbors, represented by 𝐴𝑖
or the 𝑖th row of 𝐴, the node’s updated representation 𝑥′𝑖 is computed 
as 𝑥′𝑖 = 𝜙(𝑥𝑖𝑊1 + 𝐴𝑖𝑋𝑊2 + 𝑏) where 𝑊1, 𝑊2, and 𝑏 are part of the 
fixed parameters in 𝜃, and 𝜙 is an activation function. The nonzero 
𝑎𝑖𝑗 in 𝐴𝑖 indicates that node 𝑗 is a neighbor of node 𝑖, so the term 
𝐴𝑖𝑋 aggregates the features of all of node 𝑖’s neighbors. By adding new 
decision variables 𝑋′ = (𝑥′𝑖), this equation forms a constraint on 𝑋 and 
𝐴. The second GNN layer is then encoded in exactly the same way as 
the first, but now to constrain 𝑋′. This constraining process propagates 
all the way to the final layer that calculates 𝑓𝑐 (𝐺, 𝜃), at which point 
the decision variables representing the final output can be used to 
directly express an explainability-related objective function. All of the 
constraints formed at each layer eventually back-propagate to constrain 
𝑋 and 𝐴. Additional constraints on nodes and edges can be included to 
ensure that a connected graph is generated. In the subsequent sections, 
we provide a full description of our MIP formulation including the 
design of objective functions and the formation of constraints that 
encode the GNN.

Through a sequence of algebraic operations, we ensure our MIP 
encodings of GNNs have both linear objective functions and linear 
constraints in terms of the decision variables, so our MIP is actually 
a Mixed-Integer Linear Program (MILP). Linearity greatly reduces the 
complexity of the optimization, and well-studied methods exist to solve 
continuous relaxations of the MILP problem and establish upper bounds 
on solution quality with time complexity that is polynomial in terms of 
the number of decision variables and constraints [44].
3 
Fig. 1. Logits of Star and Wheel Graphs in the Shapes Dataset.

2.1. Objective functions

Existing model-level GNN explanation methods define objectives to 
represent the knowledge that a GNN has learned about each class in 
the dataset. To find a representative graph for a class label, some of 
the existing methods (e.g., GNNInterpreter) do not directly maximize 
the class probability (which is computed through the softmax of logits). 
Rather they maximize the class logit (while ignoring the logits of other 
classes in the denominator of the softmax). However, we argue that 
maximizing a single logit may lead to wrong explanations. For instance, 
after training a GNN to differentiate between two classes of graphs 
(stars and wheels, a task defined in [29], see Section 4 for details), 
each graph receives two logits, one for each class, and the graphs are 
classified to the class of the larger logit. We plot the two logits for 
the training graphs in Fig.  1. The points above the diagonal line are 
correctly classified as Stars whereas those below the line are Wheels. All 
graphs are correctly classified but the maximum logit in the wheel class 
is actually attained by a correctly classified star graph (the rightmost 
blue point). Thus, simply maximizing the logit for wheels will produce 
a representative graph for the star class.

Our objectives are designed to examine the various differences 
between logits. Although we focus on discussing how the proposed MIP 
finds class-representative graphs for explanations in order to compare 
against extant methods, we also demonstrate that MIP can be used to 
identify other sorts of explanations for the GNN with appropriately-
designed objective functions. Eq. (Class-Representative Explanation) 
encourages class-representative features by maximizing the difference 
between the target class and the maximum of the other classes, a 
similar objective to other baseline methods. Eq. (Boundary Explana-
tion) is a novel explanation objective, which aims to find features 
representative of graphs at the decision boundary between two classes. 
Eq. (Paired Explanation) is another novel objective based on instance-
level counterfactual explanations, which jointly optimizes two graphs 
to be minimally different with a maximal change in the prediction of a 
certain class.

2.1.1. Finding class representatives
To accurately find class-discriminative information, we should max-

imize the difference between the logit of the target class and the logits 
of the other classes. Maximizing the normalized probability, as done 
by XGNN, is possible but can lead to numerical instability because 
improvements get exponentially smaller as the magnitude of the logits 
increases. We can form an objective function as a linear combination 
of all logits but with a positive coefficient for only the target class. 
However, it is possible that an optimal solution simply minimizes one 
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logit while leaving other logits close to or even greater than the logit 
of the target class, resulting in an incorrect explanation. To mitigate 
this problem, we maximize the difference between the logit of the 
target class and the maximum logit of the other classes. According to 
our observations, this approach is more effective, so we propose the 
following objective function: 

max
𝐺

𝑂(𝐺) =
(

𝑓𝑐 (𝐺, 𝜃) − max
𝑖≠𝑐

(𝑓𝑖(𝐺, 𝜃))
)

(Class-Representative Explanation)
where 𝑓𝑖 denotes the 𝑖th logit (or the 𝑖th output of the GNN before the 
application of the softmax function for classification).

2.1.2. Finding boundary explanations
For classification tasks, it can be insightful to illustrate what kind of 

graph data the GNN has difficulty to classify, i.e., those graphs that are 
located on the separation boundary (i.e., 𝑓𝑐1 (𝐺, 𝜃) = 𝑓𝑐2 (𝐺, 𝜃)) between 
two classes 𝑐1, 𝑐2. In particular, we identify the one that best represents 
a class under the condition of within a small distance 𝑑 from the 
decision boundary between the class and another class. It corresponds 
to minimizing the following objective: 

max
{𝐺∶ |𝑓𝑐1 (𝐺,𝜃)−𝑓𝑐2 (𝐺,𝜃)|<𝛿}

𝑂(𝐺) =
(

𝑓𝑐1 (𝐺, 𝜃) − max
𝑖∉{𝑐1 ,𝑐2}

(𝑓𝑖(𝐺, 𝜃))
)

,

(Boundary Explanation)
where 𝑐1 and 𝑐2 can represent any of the classes. The motivation for this 
objective function is to isolate features that may be used by the model 
to distinguish between the two classes and separate them from the rest. 
By maximizing the prediction of the chosen classes while minimizing 
the prediction of the other classes, this objective function distills the 
features that positively indicate these two classes. Proving that this 
equation has no solutions (e.g. if the two selected classes do not share 
a boundary or no graphs lie within a specified distance of it) may also 
reveal information about the model’s behavior. This would be done 
by replacing the MIP objective with the distance of the input graph 
from the decision boundary and minimizing. If the objective value to an 
optimal solution of this problem is greater than 𝛿, the equation above 
has no solutions. Note that in the case of 2 classes, the inner maximum 
is taken over an empty set and can be discarded.

2.1.3. Finding similar graphs with maximal changes in prediction
Simultaneous optimization over multiple graphs can significantly 

expand the number of possible explainability-related objectives. We 
show the advantage of this new approach by examining the pattern 
learned by the GNN that maximally shifts its decision with respect 
to a certain class. To find this pattern, we can find a pair of graphs 
𝐺1, 𝐺2 that are similar but cause the biggest change in the model’s 
prediction of a certain class, and then look at the patterns created and 
destroyed by the changes between them (e.g. cycles being created or 
broken, more edges between nodes with certain features, etc.). This 
may be more informative than a single representative explanation, 
as it is not always clear which of the patterns a single graph has 
(or possibly more importantly, does not have) that are causing the 
model to behave in a certain way. The magnitude 𝛿 of the change 
between the two graphs can be varied, with larger values allowing 
for more complex/comprehensive changes to the graph. If we quantify 
the change in model prediction by the difference in the target class’s 
predicted probabilities between 𝐺1 and 𝐺2 (i.e. 𝑓 (𝐺1, 𝜃) − 𝑓 (𝐺2, 𝜃)), it 
might be difficult to see the existence or absence of a certain pattern, 
because changes in probabilities get exponentially smaller for negative 
logits. Therefore, we choose to quantify the prediction change by the 
difference between the logits of the target class and the maximum of 
the other classes. This way it is equally advantageous to add patterns 
indicative of a different class to 𝐺  (or subtract them from 𝐺 ) as it is 
2 1
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to add patterns indicative of the target class to 𝐺1 (or subtract them 
from 𝐺2). The explanation objective is then realized as follows:

max
{𝐺1 ,𝐺2 ∶ ‖𝐺1−𝐺2‖<𝛿}

𝑂(𝐺1, 𝐺2) =
((

𝑓𝑐 (𝐺1, 𝜃) − max
𝑖≠𝑐

𝑓𝑖(𝐺1, 𝜃)
)

−
(

𝑓𝑐 (𝐺2, 𝜃) − max
𝑖≠𝑐

𝑓𝑖(𝐺2, 𝜃)
))

(Paired Explanation)
Here, ‖ ⋅ ‖ can be any graph distance metric, e.g. graph edit distance. 
Note that this differs substantially from aforementioned work using 
MIP for neural network verification, which is concerned with the dis-
tance between specific data points and the decision boundary (i.e. the 
minimum perturbations required to change their predicted classes). As 
opposed to optimizing the perturbation for a fixed input, our approach 
searches for the original and perturbed inputs at the same time, which 
removes any influence from the data and maintains sole reliance on the 
model itself for generating explanations. The two graphs do not have 
to be predicted as the target class, and may not resemble the data in 
that class at all, only their difference is relevant to the explanation.

2.1.4. Regularization
Many approaches incorporate regularizers into their explanation 

objectives to encourage generated graphs to be within the distribution 
of the training data. For regularization in XGNN, the explanation 
generator is penalized during reinforcement learning for actions that 
violate manually-defined sets of rules, such as the maximum number 
of bonds that can be formed with a certain atom in a molecule. In GN-
NInterpreter, the embedding of the explanation graph is penalized for 
being farther from the average embedding of graphs in the training set. 
While these regularization strategies may help confine the explanation 
graph to a region of the input space where the model is well-defined, 
they cannot make any guarantees. Furthermore, while regularization 
terms can normally be balanced through some tuning procedure, this 
is impossible without knowing the ground-truth explanations for the 
GNN already, and attempting to determine the weights by qualitatively 
judging a large number of generated graphs increases the likelihood of 
mistakenly accepting spurious explanations. Therefore, we do not apply 
any regularization in the objective function during our experiments. If 
desired, MIPExplainer is able to incorporate regularizers such as the one 
used by GNNInterpreter, although this would require quadratic terms 
in the constraints and objective. Constraints for keeping explanations 
in-distribution, such as those used to penalize XGNN’s explanation 
generator, can be directly encoded as constraints.

2.2. Constraints

All of the above objective functions will be optimized subject to 
the same set of constraints described in this section, with some con-
straints being duplicated when optimizing over multiple graphs as 
in Eq. (Paired Explanation). We first make a simple assumption that 
the node features are bounded by a constant 𝑀 in magnitude. We 
do not make any other assumptions about the node features or their 
distribution. We require the number of nodes in the explanation 𝑛 to 
be fixed in advance, and this is MIPExplainer’s only hyperparameter.

From the range of existing GNN layers, we focus first on GraphSAGE 
convolution layers, where the updated node representations 𝑋′ after 
a layer are calculated from existing node representations 𝑋 with the 
formula 
𝑋′ = 𝜎(𝑋𝑊1 + Aggregation(𝐴,𝑋)𝑊2 + 𝑏). (1)

The aggregation function is generally a permutation-invariant function 
which combines the sets of feature vectors of each node’s neighbors 
into single row vectors. For example, it can be an element-wise sum, 
so that Aggregation(𝐴,𝑋) = 𝐴𝑋. Our encoding of GraphSAGE layers 
will follow the work of [40].
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Assume that a GNN model has 𝓁𝑐 GraphSAGE-based convolution 
layers with sum aggregations and ReLU activations, followed by a 
global feature-wise sum pooling layer and 𝓁𝑓  fully connected layers 
with ReLU activations. In total, there are 𝓁 = 𝓁𝑐+1+𝓁𝑓  layers (indexed 
as 𝓁𝑖, 1 ≤ 𝑖 ≤ 𝓁). We will use the following notations: the matrix of 
scalars, 𝑊 (𝑖), and the vector of scalars, 𝑏(𝑖), denote the GNN’s matrix of 
learned weights and learned bias vector in layer 𝑖. For convenience, we 
also denote 𝑋(0) = 𝑋, where 𝑥𝑖𝑗 is the 𝑗th feature of node 𝑖. We will also 
add a number of intermediate decision variables to our formulation. In 
every layer, 𝛷(𝑖) represents the output of layer 𝑖 before the application 
of an activation function, and 𝑋(𝑖) represents ReLU(𝛷(𝑖)), the output 
of layer 𝑖. In the GNN layers 𝛷(𝑖) and 𝑋(𝑖) are matrices with a row 
vector for each node’s updated representation, and afterwards for layers 
𝑖 > 𝓁𝑐 they represent vectors containing the entire graph’s pooled 
representations.

To constrain 𝛷(𝑖) for the convolutional layers (1 ≤ 𝑖 ≤ 𝓁𝑐): 
𝛷(𝑖) = 𝑋(𝑖−1)𝑊 (𝑖)

1 + 𝐴𝑋(𝑖−1)𝑊 (𝑖)
2 + 𝑏(𝑖). (2)

Note that the second term includes the multiplication of the adjacency 
matrix 𝐴 and the node feature matrix 𝑋(𝑖−1) from the early layer. Thus, 
if we encode this equation directly, we will have quadratic terms in 
the relaxation subproblems. There are several ways to perform the 
linearization of quadratic terms consisting of a continuous variable and 
a binary variable, and we will describe one such method here using big-
M constraints [45]. For a given binary variable 𝑎 ∈ 𝐴 and a variable 
𝑥 ∈ 𝑋(𝑖) bounded by 𝑀 (𝑖), let 𝑒 = 𝑎 ⋅ 𝑥 be a new intermediate decision 
variable constrained as follows:
−𝑀 (𝑖)𝑎 ≤ 𝑒 ≤ 𝑀 (𝑖)𝑎, (3)

𝑥 −𝑀 (𝑖)(1 − 𝑎) ≤ 𝑒 ≤ 𝑥 +𝑀 (𝑖)(1 − 𝑎). (4)

If 𝑎 = 0, then Eq. (3) will force 𝑒 to be 0. On the other hand, if 𝑎 = 1, 
then Eq. (4) will force 𝑒 to be equal to 𝑥. Let 𝐸(𝑖) be a matrix that 
encodes 𝐴𝑋(𝑖), where each entry is the sum of the corresponding 𝑒’s 
Eq. (2) can now be rewritten: 
𝛷(𝑖) = 𝑋(𝑖−1)𝑊 (𝑖)

1 + 𝐸(𝑖)𝑊 (𝑖)
2 + 𝑏(𝑖), (5)

While this step adds extra decision variables and constraints, the result-
ing system is linear, so it becomes faster to optimize.

For the pooling layer 𝑖 = 𝓁𝑐 +1 (with 𝟏 representing a vector of 1s): 

𝛷(𝑖) = 𝟏𝑇𝑋(𝑖−1), (6)

and for the fully connected layers (𝓁𝑐 + 1 < 𝑖 ≤ 𝓁): 
𝛷(𝑖) = 𝑋(𝑖−1)𝑊 (𝑖)

1 + 𝑏(𝑖). (7)

For all layers except the pooling and output layers (0 < 𝑖 ≤ 𝓁 − 1, 𝑖 ≠
𝓁𝑐 + 1), we must constrain 𝑋(𝑖) based on the corresponding 𝛷(𝑖). We 
add the slack variable matrix 𝐵(𝑖) in Eq. (8) in order to encode the ReLU 
operation, where 𝐵(𝑖) represents 𝑅𝑒𝐿𝑈 (−𝛷(𝑖)), the negative components 
of each element of 𝛷(𝑖) discarded by the ReLU. 𝑍(𝑖) are binary decision 
variables indicating the truth value of 𝛷(𝑖) > 0 elementwise. Note that 
for elements of 𝛷(𝑖) exactly equal to 0, the corresponding values of 𝑍(𝑖)

can still be 0, but this will not affect the computation.
𝑋(𝑖) − 𝐵(𝑖) = 𝛷(𝑖), (8)

𝑋(𝑖) ≤ 𝑀𝑍(𝑖), (9)

𝐵(𝑖) ≤ 𝑀(1 −𝑍(𝑖)), (10)

0 ≤ 𝑋(𝑖), 𝐵(𝑖) ≤ 𝑀, (11)

𝑍(𝑖) ∈ {0, 1} (12)

At the indices where 𝑍(𝑖) = 0, 𝛷(𝑖) is negative, Eq. (9) ensures that 
the corresponding elements of the layer’s activation in 𝑋(𝑖) are 0. Where 
𝑍(𝑖) = 1, 𝛷(𝑖) is positive, so Eq. (10) ensures that the corresponding 
elements of the negative component 𝐵(𝑖) are 0. In both cases, Eq. (8) 
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ensures that 𝛷(𝑖) equals its positive component minus its negative 
component. For the pooling layer and output layer, we simply have 
that 𝑋(𝑖) = 𝛷(𝑖).

In order to encode the maximum output of the non-target classes 
from Eq. (Class-Representative Explanation), for the last layer we in-
troduce the single decision variable 𝑦 and constrain it so that 𝑦 =
max𝑘≠𝑐 𝑋

(𝓁)
𝑘 . Note that 𝑋(𝓁) at the output layer is a vector containing 

the class logits. To ensure the constraints are linear, we also introduce 
a vector of decision variables 𝑑 in which each element is an indicator 
representing whether the corresponding element of 𝑋(𝓁) is the maxi-
mum element in the output of layer 𝓁 when disregarding the target 
class, i.e., dimension 𝑗 of 𝑑 is 1 if 𝑗 = argmax𝑘≠𝑐𝑋

(𝓁)
𝑘  and 0 otherwise. 

Then, 𝑦 and 𝑑 are constrained as follows:

𝑦 ≥ 𝑋(𝓁)
≠𝑐 , (13)

𝑦 ≤ 𝑋(𝓁)
≠𝑐 + (max(𝑈𝑋(𝓁)

≠𝑐
)𝟏 − 𝐿𝑋(𝓁)

≠𝑐
)(𝟏 − 𝑑), (14)

∑

𝑗
𝑑𝑗 = 1, 𝑑𝑗 ∈ {0, 1}, (15)

where 𝐿𝑋(𝓁)
≠𝑐

 and 𝑈𝑋(𝓁)
≠𝑐

 represent matrices of element-wise lower and 
upper bounds for the decision variables in 𝑋(𝓁) excluding the one for 
class 𝑐. Since 𝑋, 𝐴, and 𝑍(𝑖) are explicitly bounded, these bounds can 
be derived via constraint propagation (further discussed in Section 3). 
Eq. (13) ensures that 𝑦 ≥ max𝑘≠𝑐 𝛷

(𝓁)
𝑘 . Eq. (14) ensures 𝑦 ≤ max𝑘≠𝑐 𝛷

(𝓁)
𝑘 , 

as one element in the right-hand side will be exactly equal to the 
value of 𝑋(𝓁)

≠𝑐  at the index where 𝑑 = 1, and the rest will be values 
guaranteed to be larger than it. We know that 𝑑 must indicate the 
correct maximum, as otherwise there would be a lower bound for 𝑦
in (13) (the correct maximum) greater than an upper bound for 𝑦 in 
(14) (the element identified by 𝑑), making the system inconsistent. The 
constraints in (15) ensure that 𝑑 is a one-hot vector.

2.3. The final MIP formulation

The overall MIP has decision variables 𝐴, 𝑋(𝑖), 𝛷(𝑖), 𝑍(𝑖), 𝐵(𝑖), 𝑦, 𝑑, 
𝑒𝑟𝑠𝑡 = 𝑎𝑟𝑠𝑥

(𝑖)
𝑠𝑡  for 1 ≤ 𝑟, 𝑠 ≤ 𝑁 and 1 ≤ 𝑡 ≤ 𝑑. The feasible region of these 

variables is defined by the constraints in (3)–(15), which specify each 
intermediate decision variable in terms of 𝐴 and 𝑋 alone.

In order to maximize Eq. (Class-Representative Explanation), we 
can simply set our objective function to 𝑋(𝓁)

𝑐 − 𝑦. Since we have a 
linear objective function and all linear constraints when integrality is 
relaxed, this is a MILP. In the case of Eq. (Boundary Explanation), 
additional constraints can be added to ensure that solutions lie on the 
decision boundary. Specifically, to constrain the L1 distance, we add 
the following constraints:

𝑋(𝓁)
𝑐1

−𝑋(𝓁)
𝑐2

≤ 𝛿 (16)

𝑋(𝓁)
𝑐2

−𝑋(𝓁)
𝑐1

≤ 𝛿 (17)

When optimizing over two graphs in Eq. (Paired Explanation), 
several modifications to the MIP described in the previous section are 
necessary. A simple approach is to increase the size of the adjacency 
matrix and constrain the appropriate elements to ensure that it is block-
diagonal. The GNN layers can then be encoded in the same way, but 
the pooling layer must be modified so that features from nodes in 
separate graphs (i.e. with indices corresponding to different blocks of 
the adjacency matrix) are aggregated into separate representations for 
the different input graphs. After this, separate decision variables are 
used to encode the outputs of the fully connected layers operating on 
the representations of the different graphs. Finally, the constraints in 
Eqs. (13)–(15) can be duplicated for each set of outputs to allow this 
objective function to be represented as a linear combination of decision 
variables.
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2.4. Additional constraints on 𝐴 and 𝑋

Additional constraints can be placed on 𝐴 and 𝑋 when generating 
explanations. We specifically employ the following constraints in our 
experiments. When the input space contains graphs with one-hot fea-
tures, we constrain the sum of each row of 𝑋(0) to be equal to 1 to 
ensure proper encoding. When the input graph is undirected, we can 
add the constraints 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 𝑖, 𝑗 with 0 ≤ 𝑖𝑗 < 𝑛 and 𝑖 < 𝑗 to 
ensure symmetric connections. We prevent self-loops in the explanation 
by constraining the diagonal elements of 𝐴 to be 0.

Because GNN layers are permutation invariant, reducing the number 
of equivalent representations for each graph can greatly improve the 
tractability of branch-and-bound in many situations by reducing the 
number of feasible representations of the optimal solution in different 
branches of the search tree. We incorporate the three types of symmetry 
breaking constraints proposed by [41], which all work to limit feasible 
permutations of the node ordering defined by 𝐴 and 𝑋, which reduces 
number of equivalent representations of graphs in the search space. The 
first set of constraints imposes a partial ordering on the graph nodes 
by ensuring each node has an edge to at least one other node with a 
smaller index, which also ensures that the explanation graphs are con-
nected. The second set of constraints imposes a lexicographic ordering 
on the adjacency matrix. The third group of constraints ensures that the 
node receiving the first index also has the highest number of neighbors. 
Their work shows that these three constraints are compatible and do 
not exclude any graphs from the search space.

2.5. Generalizing to other GNNs

Many highly performant GNN architectures can be perfectly rep-
resented by linear and quadratic constraints, and many more can be 
closely approximated. For example, if we choose our aggregation func-
tion to be a feature-wise average instead of a feature-wise sum, we can 
simply modify constraint (6) as 𝛷(𝑖) = 𝟏𝑇𝛷(𝑖−1) 1

𝑁  for 𝑖 = 𝓁𝑐 +1. If mean 
aggregation is used in Eq. (1), we could use another set of decision 
variables 𝐷(𝑖) for each layer, where row 𝑗 of 𝐷(𝑖) will represent the 
feature-wise average of the neighbors of node 𝑗. To properly constrain 
𝐷(𝑖), the constraint of 𝟏(𝟏𝑇𝐴)𝐷(𝑖) = 𝐴𝑋 can be included in the model. 
The multiplication of 𝐷 by elements of 𝐴 on the left-hand side of this 
expression can be linearized as previously described. Now, constraint 
(2) can be changed to:
𝛷(𝑖) = 𝑋(𝑖−1)𝑊 (𝑖)

1 +𝐷(𝑖)𝑊 (𝑖)
2 + 𝒃(𝑖)

In passing layer from a Graph Isomorphism Network [46], updated 
node representations are calculated as 𝑋′ = ℎ((𝐴+ (1 + 𝜖)𝐼)𝑋) where ℎ
is a neural network, and 𝜖 is a constant. We can split this computation 
by constraining intermediate decision variables according to the inner 
piece, 𝐴𝑋 + ((1 + 𝜖)𝐼)𝑋, and the application of the neural network to 
those intermediate variables, which can be encoded with constraints 
similar to those in Eqs. (3)–(12). The work in [40] also describes a way 
to encode GCN layers with linear constraints.

2.6. The optimization algorithm

We employ a standard branch and bound procedure [47], along 
with cutting planes and heuristics, to find a globally optimal solution 
efficiently. In Algorithm 1 we describe the most basic form of this 
approach for solving our MIP described in the previous section, which 
is represented by its set of constraints 𝐶 and objective function 𝑜. We 
obtain an initial solution at the root of a search tree by choosing an 
initial graph 𝐺0 = (𝑋0, 𝐴0) and applying the GNN to obtain initial 
values for all the intermediate variables.

We start by finding the optimal solution of the continuous relaxation 
(i.e. the MIP with the integrality constraints removed) of the MIP 
problem (line 7), which can be done quickly using the simplex method. 
The objective value for the resultant optimal solution 𝑧∗ serves as an 
6 
Algorithm 1 MIP Branch and Bound Procedure
1: Input: The constraint set 𝐶, the objective function 𝑂, and an initial 
graph 𝐺0 = (𝑋0, 𝐴0)

2: Initialize a queue 𝑄 containing only 𝐶 as a single element 
3: 𝐿 ← 𝑂(𝐺0)
4: 𝑧 ← 𝐺0
5: while 𝑄 is not empty do 
6: 𝑁 ← search node popped from 𝑄
7: Solve the continuous relaxation of 𝑁 , denoted 𝑁𝑟, and store the 

result in 𝑧∗
8: 𝑈 ← 𝑂(𝑧∗)
9: if 𝑁𝑟 was feasible and 𝑈 > 𝐿 then 
10: if 𝑧∗ obeys all integrality constraints, defining a valid graph 𝐺∗

then 
11: 𝑧 ← 𝑧∗

12: 𝐿 ← 𝑂(𝐺∗)
13: else 
14: 𝑣 ← An integer variable with a non-integral value 𝑧∗𝑣 in 𝑧∗
15: Add the subproblems 𝑁 ∪ {𝑣 ≤ ⌊𝑧∗𝑣⌋} and 𝑁 ∪ {𝑣 ≥ ⌈𝑧∗𝑣⌉} to 

𝑄
16: end if
17: else 
18: Prune the subtree rooted at 𝑁 by continuing to the next 

iteration without adding any nodes to 𝑄
19: end if
20: end while
21: return 𝑧

upper bound 𝑈 to the original problem with the additional integrality 
constraints. If this solution 𝑧∗ happens to also satisfy all of the inte-
grality constraints of the original MIP, then it is an optimal solution 
to the original problem rather than just its continuous relaxation, and 
we can stop since the simplex algorithm guarantees that there are no 
other solutions with better objective values. If any integer variable 
takes a fractional value in the solution of the continuous relaxation 
𝑧∗, for instance, 𝑣 ∶= 𝑧∗𝑣 where 𝑧∗𝑣 is a fraction, we branch the MIP 
on 𝑣 by splitting the original problem into two subproblems with the 
extra constraints of 𝑣 ≤ ⌊𝑧⌋ or 𝑣 ≥ ⌈𝑧⌉ respectively (lines 14–15), 
which partition the search space of the original problem. The optimal 
solution to the original problem will then be the maximum optimal 
solution of these two subproblems, which can be solved recursively in 
the same way, leading to a binary tree in which nodes represent further 
constrained versions of the original MIP at the root. After branching and 
adding the new constraints, the two MIP subproblems together consider 
all the same integral solutions as the original MIP, but the regions 
considered by their linear relaxations no longer include the area where 
⌊𝑧⌋ < 𝑣 < ⌈𝑧⌉. As a result, the maximum of the children’s upper bounds 
is still an upper bound for the parent MIP, but smaller than or equal 
to the upper bound provided by the parent MIP’s linear relaxation. As 
a result, our upper bound on the original MIP strictly decreases as we 
explore more of the search tree. After we branch enough times, the 
added constraints eventually ensure that the continuous relaxation of 
the system has an integral solution, at which point we have reached 
a leaf in the search tree. Each time we reach a leaf, the solution it 
contains meets all of the constraints of the original problem, so its 
objective value also serves as a lower bound for the optimal solution 
to the original problem. Our tightest lower bound 𝐿 increases as we 
find leaves with better and better solutions (lines 10–12). The upper 
and lower bounds tighten as we search the tree, and eventually meet, 
at which point the solution 𝑧 for which 𝑂(𝑧) = 𝐿 proven to be the 
optimal. Crucially, we do not need to explore the entire search tree for 
this to happen. If the continuous relaxation solved at an internal node is 
infeasible or has a maximum objective value that is lower than or equal 
to our current lower bound, we do not have to search the branch rooted 
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at that node because no new optimal solution can lie in that subtree 
(line 18). The process stops when there are no more subproblems to 
explore, at which point we will have found an optimal solution to the 
original MIP. In our experiments, we use Gurobi Optimizer [48], a fast 
and efficient solver, to find an optimal solution to the MIP proposed 
in Section 2.3. While the theoretical complexity of this algorithm is 
exponential, the average complexity is significantly lower in practice, 
making it possible to find and guarantee an optimal solution in many 
situations.

3. Practical considerations

In practice, it can be difficult to solve MIPs corresponding to large 
GNNs, and several techniques are needed to make the process tractable. 
Often, just finding an initial setting for all of the decision variables 
that satisfies all constraints is difficult. In our experiments, we found 
that this initial step can actually take longer than the subsequent 
optimization. This problem can be completely eliminated with a warm 
start. Starting from an arbitrary input graph (either from the dataset 
or not), we can compute a forward pass through the network to obtain 
a valid setting of initial values for almost all of the decision variables. 
In cases where additional constraints have been imposed on the graph, 
such as the ones used to break symmetry, any graph used as a warm 
start must be converted into the canonical form that also satisfies 
these constraints. When optimizing Eq. (Boundary Explanation), we 
may not have an initial graph within the specified distance of the 
decision boundary. In this case, we can start by omitting the associated 
constraints and minimizing the distance to the decision boundary until 
they are satisfied. This solution can then be used to warm-start the full 
MIP.

Although a single, large number 𝑀 can be used to bound all of 
the continuous decision variables, tighter bounds greatly reduce the 
time needed to compute optimal solutions. While automated bound-
tightening procedures exist, it is faster to use knowledge of the problem 
to bound manually. Each hidden representation computed by the model 
is encoded by a separate set of decision variables. Assuming we have 
bounded the decision variables for one, we can compute bounds for 
the outputs of a following transformation. For example, given a hidden 
representation vector 𝑥 with element-wise lower bound vector 𝑥𝐿 and 
upper bound vector 𝑥𝑈 , we can get upper and lower bounds on the 
output of a linear layer 𝑥′ = 𝑊 𝑥 + 𝑏: 
𝑥′𝐿 = ReLU(𝑊 )𝑥𝐿 + ReLU(−𝑊 )𝑥𝑈 + 𝑏,

𝑥′𝑈 = ReLU(𝑊 )𝑥𝑈 + ReLU(−𝑊 )𝑥𝐿 + 𝑏.
(18)

Given the bounds on the explanation graph (i.e., 𝑋 and 𝐴), we 
can propagate the bounds forward through the GNN to iteratively 
bound the set of decision variables for each hidden representation. 
Bounds for the outputs of ReLU activation layers are the same as those 
for their inputs, but clipped below at 0. In the case of layers like 
GraphSAGE convolutions where the output is the sum of several matrix 
multiplications, bounds can be derived for each term in the sum and 
then added together. This strategy of constraint propagation has been 
explored and validated in [36].

Floating-point precision errors can lead to serious problems for MIP 
solvers. In cases where decision variables can take both small and large 
values, a significant amount of time may be needed to avoid numerical 
instability. This problem emerges when the weights of GNNs become 
very small, an effect often produced by regularization. However, we 
found that weights below a certain threshold (e.g., we chose 10−5) 
could be floored to zero without significantly affecting the behavior of 
the network. All performance metrics for the networks used in the ex-
periments were computed after the networks were pruned in this way. 
We also found that smoothing networks with weight regularization 
during training improved MIP solution times.
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4. Experimental evaluation

We use two synthetic datasets and four real-world datasets to evalu-
ate our method: Is_Acyclic, Shapes, MUTAG, NCI1, IMDB-BINARY, and 
REDDIT-BINARY (see Table  1). These datasets have all been previously 
used to compare GNN explanation methods. The Is_Acyclic dataset 
comes from XGNN’s experiments, and has two classes consisting of 
Cyclic and Acyclic graphs of various types. The Cyclic class includes 
graphs like grids, single cycles, and wheels, while the Acyclic class 
includes paths and various types of trees. Every node is given the same 
feature, a single constant, in order to isolate the explanation methods’ 
ability to capture structural information. For the Shapes dataset, which 
comes from GNNInterpreter’s experiments, graphs are first generated 
from one of five base classes: Lollipop graphs contain a fully connected 
component with one connection to a path graph’s end node, Grid graphs 
are lattices where each internal node has 4 neighbors, Star graphs 
have multiple outer nodes connected to a single central node, and 
Wheel graphs are Star graphs with a single cycle connecting the outer 
nodes. For each of these graphs, a uniform proportion between 0 and 
0.2 is chosen, and the number of edges in the graph is increased by that 
amount by adding in edges uniformly at random. The features of each 
node are the same as in Is_Acyclic. The MUTAG dataset [49] consists of 
graphs of chemical compounds, where nodes represent atoms and edges 
represent bonds between them. Each compound is classified as being 
either mutagenic or non-mutagenic. As described by the creators of this 
dataset and in [50], mutagenic molecules tend to have higher numbers 
of fused rings of carbon atoms. For this dataset, each node’s features 
are a one-hot vector indicating atom type. NCI1 [51] is an additional 
molecule dataset that comes from a non-small cell lung human tumor 
cell line growth inhibition assay. IMDB-BINARY [52] contains networks 
of actors participating in movies, with edges linking costars. REDDIT-
BINARY [52] is built from comment threads with nodes as users and 
edges between users where at least one has replied to the other, 
with graphs labeled according to whether the thread came from a 
question/answer subreddit or a discussion-based subreddit. As IMDB-
BINARY and NCI1 do not have obvious ground-truth explanations to 
distinguish their classes, we will discuss quantitative but not qualitative 
results for these datasets.

To assess the stability of different explanation methods (i.e., to 
quantify the variation among generated explanations of each method), 
we run repeated experiments with each explanation method and mea-
sure the average graph edit distance between all pairs of explanations. 
Graph edit distance, as described in [43], is the minimum number of 
graph edit operations (vertex/edge insertions/deletions/substitutions) 
needed to transform one graph into another. A lower average graph 
edit distance indicates a more stable explanation method.

4.1. Setup and implementation

Each dataset is randomly split into a training set (80%) for training 
a GNN model and a test set (20%) for measuring its accuracy. The 
performance of our GNN models trained on the six datasets is reported 
in Table  2, and is comparable to those previously used to test other 
GNN explanation methods. We compare MIPExplainer with the five 
most relevant approaches: XGNN, GNNInterpreter, PAGE, D4Explainer, 
and KnowGNN. To run experiments with these comparison methods, we 
use the implementations provided by their respective authors: XGNN in 
DIG1 [7],GNNInterpreter2 and PAGE,3 D4Explainer,4 and KnowGNN.5 
All methods are run with the same hardware including 32 Processors, 

1 https://github.com/divelab/DIG
2 https://github.com/yolandalalala/GNNInterpreter
3 https://github.com/jordan7186/PAGE
4 https://github.com/Graph-and-Geometric-Learning/D4Explainer
5 https://github.com/lxf770824530/KnowGNN

https://github.com/divelab/DIG
https://github.com/yolandalalala/GNNInterpreter
https://github.com/jordan7186/PAGE
https://github.com/Graph-and-Geometric-Learning/D4Explainer
https://github.com/lxf770824530/KnowGNN
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Table 1
Dataset summary and statistics. 
 # Graphs # Classes Average # of nodes Average # of edges # Node features 
 Shapes 8000 5 27.230 144.927 1  
 Is_Acyclic 533 2 28.463 68.079 1  
 MUTAG 188 2 17.931 39.585 7  
 NCI1 3847 2 29.946 65.053 8  
 IMDB-BINARY 1000 2 19.773 193.062 1  
 REDDIT-BINARY 2000 2 429.627 995.508 1  
32G of RAM, and an NVidia Tesla A100 (unnecessary for MIPExplainer, 
which runs only on the CPU). As no clear strategy exists to tune all 
of their hyperparameters, we use the default hyperparameter settings 
provided in their papers as much as possible. An exception was made 
for XGNN because the default regularization weights provided by the 
authors cause the graph generator to quickly learn a policy that stopped 
after the first node in several instances. To fix this, we have increased 
the reward for creating additional valid edges to the point that it 
is favorable for the explanation model to generate reasonably-sized 
explanations. In all experiments, the GNNs use GraphSAGE-style con-
volutions with summation as the aggregation operator, followed by 
a global mean pooling layer, and finally several fully-connected (FC) 
layers. ReLU activations are placed between each hidden layer. For the 
Is_Acyclic, Shapes, and IMDB-BINARY datasets, the GNN uses 2 convo-
lutional layers computing 16 features per node, a FC layer computing 
8 features, and a final FC layer to compute the class logits. For the 
REDDIT-BINARY dataset, we trained a deeper, less-wide network with 
4 convolutional layers computing 8 features per node and two FC layers 
computing 8 features per graph before the final FC layer computing 
the 2 class logits. For the MUTAG and NCI1 datasets, the GNN uses 
2 convolutional layers computing 64 and 32 features per node, two 
FC layers computing 16 and 8 features per graph, and the final FC 
layer computing the logits. All GNNs are implemented using PyTorch-
Geometric [53] and trained for 200 epochs, optimizing with Adam [54] 
with a learning rate of 10−3 and L2 regularization with weight 10−4.

XGNN’s graph generator policy network penalizes the violation of 
valence constraints while generating molecules on the MUTAG dataset. 
In the experiments with MIPExplainer, adjacency matrices were con-
strained to be symmetric to represent undirected connected graphs 
without self-loops. For the MUTAG dataset, node features were con-
strained to one-hot vectors by ensuring the sum of the elements in each 
row added up to 1, but no chemistry-specific constraints were used. 
Based on the reported time from all methods using the same hardware, 
we observed that two hours was enough for most methods to report 
reasonable performance. If MIPExplainer did not prove optimality after 
two hours, we report the best solution found. To ensure that any 
resemblance to target classes would not come from an initial solution, 
every explanation optimized by MIPExplainer was initialized with a 
graph generated by adding every possible edge to a line graph with 
probability 0.5.

We use stability of generated explanations, i.e., average graph edit 
distance (GED including node features) across multiple runs, as a 
performance metric for each explanation method. Note that stability 
does not guarantee the quality of the explanation graphs themselves, 
and thus is a necessary but not sufficient measure of performance. 
First, we generate explanations with 5, 6, 7, and 8 nodes (the baseline 
methods sometimes produce explanations that do not have the maxi-
mum number of nodes) using each method on each dataset 5 times. 
Then, we compute the average GED among the 5 explanations. Table 
3 shows these metrics averaged over the different numbers of nodes 
when generating class representatives, and is discussed in Section 4.2.5. 
A full table containing individual results for each number of nodes can 
be found in Appendix.
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Table 2
Performance summary of our trained GNNs.
 Train accuracy Test accuracy Number of model 

parameters
 

 Shapes 0.991 0.993 757  
 Is_Acyclic 0.998 1.000 730  
 MUTAG 0.893 0.895 5770  
 NCI1 0.820 0.810 5898  
 IMDB-BINARY 0.718 0.715 730  
 REDDIT-BINARY 0.856 0.858 594  

4.2. Results: Class representative explanations

We start by analyzing the class representatives found by optimizing 
over Eq. (Class-Representative Explanation) and comparing them to 
the representatives found by XGNN, GNNInterpreter, and PAGE. The 
main results from our experiments are discussed in Sections 4.2.1–4.2.3 
as shown in Tables  4–6. These tables show 3 explanations randomly 
chosen among the results of 5 runs for each method and each dataset 
with each explanation size.

4.2.1. Shapes
For the Shapes dataset, we can consistently recognize class-specific 

features in each of the explanations generated by MIPExplainer, all 
of which are proven to be optimal. Despite the fact that a significant 
amount of noise has been added to the training data, the explanations 
are relatively clean. This may explain why the explanations for Star 
graphs are not perfect stars, because in the dataset, Star graphs often 
had noisy edges added between the outer nodes. Similarly, this may 
be the reason that explanations for the Lollipop class sometimes have 
cycles instead of tails. In reality, graphs from this class usually just 
consisted of a clique amid a less-densely connected group of nodes after 
the noisy edges were added (since no edges can be added to the clique 
in the original graph, they are all added to the stem). For reference, 
examples from the four classes in the Shapes dataset are shown in Fig. 
2.

As shown in Table  4, MIPExplainer generates reasonable class rep-
resentatives for all of the different shapes and across the different graph 
sizes. GNNInterpreter and XGNN perform comparably to MIPExplainer, 
but we do see that GNNInterpreter will sometimes generate path graphs 
across all shapes, whereas XGNN seems to generate shapes resembling 
lollipops for the classes of Star and Wheel. Although GNNInterpreter 
and XGNN can find suitable explanations, the same experimental set-
tings with different parameter initializations lead to widely varying 
results (low stability). This is also the case in the rest of our experi-
ments with different models and datasets (also seen in Table  3). PAGE 
produces reasonable explanations for most of the classes except for the 
Star class, for which it generated a structure found in graphs from all 
of the classes (despite attempts at parameter tuning for this class, the 
resulting explanation remained unchanged). This is an instance where 
our stability metric is not sufficient for measuring the performance of 
explanation methods.
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Table 3
Stability comparison: average edit distance between 5 generated example graphs, averaged for numbers of nodes between 5 and 8 inclusive. Time limit is 2 h.
 Dataset Method: Average edit distance
 Class MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN  
 
Shapes

Grid 0.0 ± 0.00 3.6 ± 0.89 3.0 ± 2.42 2.0 ± 0.46 2.6 ± 0.47 1.4 ± 1.00 
 Lollipop 0.0 ± 0.00 3.5 ± 0.77 3.4 ± 2.03 3.4 ± 1.81 4.0 ± 1.85 1.4 ± 0.0  
 Star 0.0 ± 0.00 3.9 ± 1.21 3.0 ± 2.60 0.0 ± 0.00 3.2 ± 1.59 1.4 ± 0.28 
 Wheel 0.75 ± 1.0 3.3 ± 1.04 4.0 ± 3.32 4.0 ± 2.26 2.9 ± 1.37 1.4 ± 0.63 
 Is_Acyclic Acyclic 0.15 ± 0.30 3.5 ± 0.77 2.8 ± 1.62 0.0 ± 0.00 3.0 ± 1.38 1.6 ± 1.18 
 Cyclic 0.0 ± 0.00 3.1 ± 1.05 3.2 ± 1.82 3.4 ± 1.14 3.2 ± 1.40 1.6 ± 0.57 
 MUTAG Mutagen 0.0 ± 0.00 8.1 ± 1.19 7.8 ± 2.17 0.8 ± 0.57 6.0 ± 1.14 3.3 ± 0.44 
 Nonmutagen 3.1 ± 4.53 7.8 ± 1.56 7.4 ± 2.39 0.0 ± 0.00 5.8 ± 1.53 3.1 ± 1.35 
 NCI1 Active 8.2 ± 4.12 7.6 ± 1.69 7.4 ± 2.14 3.7 ± 0.76 7.0 ± 1.40 3.6 ± 1.33 
 Non-Active 0.5 ± 0.60 9.4 ± 3.46 7.0 ± 2.17 2.7 ± 0.60 6.8 ± 1.72 3.3 ± 1.27 
 IMDB-BINARY Action 0.0 ± 0.00 3.3 ± 1.73 4.0 ± 3.32 3.8 ± 4.17 4.9 ± 5.61 1.6 ± 0.75 
 Romance 0.2 ± 0.40 4.4 ± 1.21 3.4 ± 2.14 0.0 ± 0.00 2.0 ± 2.56 1.4 ± 0.44 
 REDDIT-BINARY Discussion 0.0 ± 0.00 5.0 ± 4.07 2.8 ± 2.36 OOM OOM OOM  
 QA 0.0 ± 0.00 3.6 ± 1.26 2.9 ± 1.01 OOM OOM OOM  
Fig. 2. Randomly selected graphs from the Shapes dataset.
4.2.2. Is_Acyclic
In the experiments with Is_Acyclic, MIPExplainer always explains 

the Cyclic class with a complete graph, which has the maximum pos-
sible number of cycles. It explains the Acyclic class with a Star graph, 
which is one of the most straightforward examples from the class. PAGE 
performs very well on the Acyclic class, but the results on the Cyclic 
class are less stable, as it generates path graphs in multiple trials. In 
contrast, the explanation graphs of XGNN and GNNInterpreter for the 
Cyclic class sometimes contain nodes with a single neighbor, and their 
explanations for the Acyclic class often include many cycles. D4Ex-
plainer always produced graphs with cycles, while KnowGNN always 
produced graphs without cycles. For MIPExplainer, while optimality 
was achieved for all results, its runtime was notably different between 
the Cyclic and Acyclic classes as shown in Table  5. Although the 
average time to generate the Cyclic explanation increased by less than 
a second between 5 nodes and 8 nodes, the average time to generate 
the Acyclic explanation increased from around 5 s to around 144. This 
is partially due to the number of graph representations in the equiv-
alence class of each explanation. A fully connected graph with equal 
node features only has a single adjacency matrix and feature matrix 
representation, while a Star graph with 𝑛 nodes has 𝑛 representations 
9 
before symmetry breaking constraints are added, as there are 𝑛 options 
for the position of the central node in the node ordering. As a result, 
despite the solution having the same number of nodes and fewer edges, 
the solver may explore more of the search tree to prove the optimality 
of the Acyclic explanation. While the symmetry breaking techniques we 
employed do mitigate this problem, they do not alleviate it completely. 
Other causes could have to do with the structure of the GNN itself 
and numerical issues. Example plots of the objective bounds and the 
number of explored and unexplored search nodes during the search for 
an optimal solution can be found in Appendix.

To further visualize the behavior of MIPExplainer, in Fig.  3 we show 
all of the intermediate incumbent solutions discovered while searching 
for an explanation for our GNN’s prediction of the Wheel dataset. These 
were obtained when new graphs were found during branch and bound 
that improved upon the previous incumbent solution’s objective value.

4.2.3. MUTAG
For the mutagenic class of the MUTAG dataset, MIPExplainer pro-

duces a complete graph of carbon atoms. While the presence of carbon 
cycles is an important factor in the mutagenicity of organic molecules, 
they appear exclusively as rings of 5 or 6 carbon atoms. None of 
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Table 4
Explanations from each method for the Shapes GNN.

  

 (continued on next page)
Fig. 3. Algorithmic behavior: improved solutions over the branch and bound tree search starting from a randomly initialized graph from the left all the way to the final optimal 
solution on the right.
the explanations generated by the baseline methods contained a cycle 
of carbon atoms. For nonmutagens, MIPExplainer produces molecules 
with carbon atoms and bromine atoms, the latter of which appear 
in 2 of them. Notably, any two carbon atoms in these explanations 
have a bromine atom in between that ensures there are no carbon 
cycles, but we cannot clearly state that this is the pattern that the 
GNN is using to differentiate the classes. The explanations of the non-
mutagenic class are actually less reasonable across all methods, which 
is expected since non-mutagens are more accurately described by the 
10 
absence of mutagenic features than by the presence of non-mutagenic 
features. PAGE struggled the most on this dataset, it only produced 
path graphs of carbon atoms for both classes. On the other hand, 
all baselines produced completely inconsistent results with seemingly 
random structure.

Due to the larger size of the GNN model and the introduction of 
node features in MUTAG, almost none of MIPExplainer’s explanation 
graphs were able to be verified as optimal. However, even starting from 
random initialization graphs every time, the outputs were very stable 
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Table 4 (continued).

 

and often extremely close to the upper bound established by the solver. 
While MIPExplainer’s full runtime may be longer than that of other 
methods in several settings, our experimental results demonstrate that 
the method is practically useful even with runtime limits that stop the 
optimization procedure early.

4.2.4. REDDIT-BINARY
The REDDIT-BINARY dataset contains graphs representing the struc-

ture of comments sections on Reddit, with nodes representing users 
and edges between pairs of users if one replied to the other. The two 
classes contain posts from discussion-based forums and Question/An-
swer (QA)-based forums. MIPExplainer produces explanations that are 
aligned with the fact that discussion-based forums would have a denser 
reply structure, while QA-based forums would tend to be more tree-
like with the original user as the root. This is reflected in some of 
GNNInterpreter’s results, but not most, especially with higher numbers 
of nodes in the explanation graph. XGNN also tended to produce more 
densely connected graphs for the discussion class, but this would be 
hard to see without prior knowledge. Because the graphs from this 
dataset are significantly larger in size, the remaining three baselines 
ran out of memory and were not able to produce any results.
11 
4.2.5. Stability and runtime
Table  3 clearly shows the high stability of MIPExplainer with sub-

stantially lower graph edit distances on average over the generated ex-
planations than GNNInterpreter and XGNN which both rely on stochas-
tic optimization. In our MIPExplainer, small variations in explanations 
are due to the existence of multiple explanation graphs with the exact 
same objective value, which tend to be extremely similar (as observed 
in our experiments on Shapes and Is_Acyclic data). On MUTAG, the 
algorithm could run out of time before finding an optimal solution, 
which, however, rarely caused deviations, as the best solution was 
generally found much earlier than it was proven to be optimal. The only 
case in which MIPExplainer does not achieve the highest stability was 
with the NCI1 dataset, which could have a number of causes. Not only 
was this GNN the largest, not allowing us to prove optimality within 
the time limit, but this task was also the most complex and without a 
clear ground-truth. KnowGNN and PAGE are also relatively stable in 
certain experimental settings, but by cross-referencing Tables  4–7 we 
observe that in these cases the explanatory graphs are not related to 
the ground truth of the dataset.

The runtimes for all of our experiments are shown in Table  8. Note 
that only the time recorded for our method is the convergence time 
whereas for all other methods, the runtime depends on the value of a 
hyperparameter which is the number of maximum iterations. The run-
time in Table  8 for these methods was obtained by using their default 
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Table 5
Explanations from each method for the Is_Acyclic GNN.

 

hyperparameter values in their original implementations. These meth-
ods can run arbitrarily long with different hyperparameter choices, 
but without any convergence guarantee. Most importantly, there is 
no guidance on how to choose proper values for this hyperparameter, 
so we report their default runtimes. While the computational cost of 
convergence is significant, it is also necessary when generating ex-
planations without any ground truth. Furthermore, the computational 
complexity of MIPExplainer does not depend on the size of the dataset 
or the graphs it contains, allowing it to be applied to datasets like 
REDDIT-BINARY where baseline methods such as PAGE, D4Explainer, 
and KnowGNN, run out of memory with the same hardware configu-
ration. Various methods for improving MIP encodings of ReLU neural 
networks [55–57] can also be used to reduce MIPExplainer’s runtime.

4.3. Results: Alternative objectives

We now discuss the results we obtained when optimizing over the 
alternate objective functions that we proposed in Sections 2.1.2–2.1.3.
12 
4.3.1. Boundary explanations
Fig.  4 shows the result of encoding GNNs with MIPs and optimizing 

the objective defined in Eq. (Boundary Explanation) with various pairs 
of classes. Between Cyclic and Acyclic classes, the identified graph is 
half completely acyclic and half densely connected, so it is understand-
able why this might be a hard-to-classify case. Applying this same 
explanation objective to a multi-class problem on the Shapes dataset 
provided more diverse results. Part of the reason for this is that not 
every pair of classes must share a decision boundary. Nevertheless, each 
explanation does exhibit features of the prototypes used to construct 
the corresponding classes in the datasets. For instance, the Wheel/Grid 
explanation contains both lattice-like structures and an outer cycle. The 
Star/Lollipop graph does have a sparsely connected subgraph and a 
more densely connected subgraph, but the densely-connected subgraph 
seems to be composed of two Star subgraphs. Fig.  4(d) shows a pattern 
that GNN model exhibits as difficult to distinguish between Lollipop 
and Wheel, but is not easily connected to ground-truth knowledge 
about the distribution of the data in the two classes.
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Table 6
Explanations from each method for the MUTAG GNN. Atom types are assigned to node colors as follows: gray=Carbon, blue=Nitrogen, 
red=Oxygen, cyan=Fluorine, purple=Iodine, green=Chlorine, and brown=Bromine.

 

Table 7
Explanations for a GNN trained on REDDIT-BINARY. PAGE, D4Explainer, and KnowGNN all ran out of memory before generating any explanations.

 

13 



B.B. Gaines et al. Neurocomputing 639 (2025) 130214 
Table 8
Runtime of explanation methods in seconds given a time limit of 2 h, averaged over 5 runs. Note that baseline methods all require a hyperparameter to specify the maximum 
number of iterations, so the runtime with the default values for this hyperparameter are shown here for these methods, which does not correspond to convergence time.
 Dataset Class Method: Runtime (s)
 # Nodes MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN  
 

Sh
ap
es

Gr
id

5 2.833 ± 0.138 7.563 ± 0.018 11.644 ± 0.196 169.229 ± 35.599 6636.139 ± 13.134 34.769 ± 11.610  
 6 5.787 ± 1.258 7.614 ± 0.040 14.964 ± 0.151 168.219 ± 27.860 6624.593 ± 5.153 41.541 ± 9.323  
 7 31.601 ± 9.317 7.648 ± 0.022 17.817 ± 0.149 196.568 ± 56.987 6632.882 ± 13.970 81.888 ± 62.356  
 8 129.581 ± 44.449 7.667 ± 0.007 20.497 ± 0.735 186.375 ± 39.010 6647.856 ± 36.116 79.794 ± 32.195  
 

Lo
llip
op

5 3.347 ± 0.310 7.631 ± 0.016 11.543 ± 0.102 1722.388 ± 1645.125 6638.538 ± 6.854 44.444 ± 6.163  
 6 9.284 ± 2.155 7.634 ± 0.013 15.048 ± 0.410 2446.997 ± 1744.256 6655.414 ± 22.061 92.424 ± 83.872  
 7 84.935 ± 57.100 7.661 ± 0.019 17.934 ± 0.370 4519.390 ± 2483.927 6642.972 ± 15.999 88.168 ± 84.727  
 8 395.661 ± 35.234 7.705 ± 0.027 19.852 ± 0.355 4544.374 ± 2391.289 6637.966 ± 13.236 96.729 ± 69.865  
 

Sta
r

5 2.679 ± 0.211 7.560 ± 0.014 11.512 ± 0.173 1092.232 ± 24.380 6640.302 ± 11.576 44.053 ± 10.285  
 6 8.565 ± 0.593 7.592 ± 0.007 14.955 ± 0.279 981.970 ± 201.647 6641.986 ± 15.288 1555.602 ± 2019.522 
 7 18.440 ± 3.583 7.624 ± 0.014 17.942 ± 0.440 960.851 ± 177.717 6633.952 ± 11.672 330.358 ± 575.275  
 8 201.184 ± 10.097 7.659 ± 0.016 19.931 ± 0.673 1052.084 ± 156.791 6641.880 ± 6.828 67.176 ± 13.427  
 

W
he
el

5 2.574 ± 0.295 7.716 ± 0.255 11.550 ± 0.043 339.397 ± 68.815 6638.569 ± 9.102 57.327 ± 24.986  
 6 4.852 ± 0.811 7.641 ± 0.010 15.507 ± 0.763 287.603 ± 89.035 6642.933 ± 8.283 42.357 ± 3.097  
 7 30.555 ± 27.573 7.652 ± 0.010 18.047 ± 0.395 267.701 ± 62.479 6640.200 ± 9.726 79.994 ± 49.452  
 8 103.380 ± 6.843 7.706 ± 0.051 20.095 ± 0.387 344.541 ± 81.041 6639.850 ± 10.452 101.561 ± 82.853  
 

Is_
Ac
yc
lic

Ac
yc
lic

5 5.031 ± 1.237 7.610 ± 0.015 10.040 ± 0.135 70.247 ± 8.764 2182.708 ± 238.532 80.434 ± 27.150  
 6 8.660 ± 1.731 7.626 ± 0.022 13.482 ± 0.528 68.175 ± 9.639 2191.858 ± 276.752 71.319 ± 48.391  
 7 20.655 ± 3.781 7.679 ± 0.054 15.419 ± 0.561 72.303 ± 7.872 2064.532 ± 221.328 218.001 ± 264.619  
 8 144.003 ± 18.049 7.684 ± 0.013 17.265 ± 0.479 74.056 ± 10.106 2110.262 ± 218.104 67.598 ± 12.993  
 

Cy
cli
c

5 2.721 ± 0.356 0.027 ± 0.008 9.842 ± 0.057 45.882 ± 53.643 2126.876 ± 89.113 61.424 ± 29.783  
 6 2.389 ± 0.310 0.024 ± 0.000 12.877 ± 0.482 81.296 ± 60.228 2204.120 ± 324.208 110.652 ± 122.933  
 7 2.497 ± 0.637 0.030 ± 0.003 15.257 ± 0.377 94.117 ± 63.071 2033.200 ± 354.808 112.535 ± 58.912  
 8 3.160 ± 0.359 0.115 ± 0.051 18.216 ± 1.273 82.400 ± 46.520 1929.667 ± 152.450 107.532 ± 36.047  
 

MU
TA
G Mu

tag
en

5 643.690 ± 40.088 0.024 ± 0.001 8.701 ± 0.455 77.669 ± 8.570 660.824 ± 61.413 41.135 ± 7.637  
 6 2344.545 ± 305.734 0.025 ± 0.004 10.305 ± 0.297 77.002 ± 13.707 690.062 ± 76.165 58.004 ± 15.924  
 7 2838.178 ± 677.224 0.060 ± 0.060 12.069 ± 0.257 82.721 ± 12.034 678.170 ± 48.154 71.139 ± 21.163  
 8 6685.271 ± 1154.943 0.114 ± 0.007 14.727 ± 0.619 85.198 ± 11.644 670.695 ± 45.891 393.042 ± 395.584  
 

No
nm
uta
ge
n 5 4092.657 ± 513.121 5.633 ± 5.109 8.747 ± 0.530 78.059 ± 9.494 646.606 ± 55.436 31.863 ± 7.178  

 6 7202.002 ± 0.264 7.599 ± 4.213 10.403 ± 0.342 84.976 ± 11.062 707.473 ± 46.319 51.356 ± 4.744  
 7 7201.925 ± 0.312 9.659 ± 0.049 12.595 ± 0.731 79.095 ± 14.449 689.110 ± 65.032 88.163 ± 48.180  
 8 7201.931 ± 0.170 7.857 ± 4.304 13.946 ± 0.429 71.706 ± 13.730 652.691 ± 52.439 98.607 ± 25.698  
 

NC
I1

Ac
tiv
e

5 7200.976 ± 0.335 18.695 ± 3.624 36.145 ± 27.658 28.105 ± 6.455 6628.768 ± 7.199 293.771 ± 139.735  
 6 7201.089 ± 0.158 42.992 ± 40.033 73.601 ± 43.805 38.930 ± 3.414 6635.254 ± 16.367 437.854 ± 340.840  
 7 7201.499 ± 0.837 12.780 ± 28.418 133.788 ± 124.983 25.549 ± 5.204 6622.113 ± 4.287 182.442 ± 110.223  
 8 7201.659 ± 0.637 17.832 ± 5.407 371.441 ± 209.454 37.124 ± 12.530 6628.570 ± 5.847 98.045 ± 66.289  
 

No
n-A
cti
ve

5 7200.941 ± 0.261 0.037 ± 0.020 13.650 ± 2.605 19.088 ± 7.303 6627.870 ± 7.406 381.068 ± 149.799  
 6 7200.610 ± 0.015 0.028 ± 0.001 18.425 ± 6.625 14.147 ± 2.998 6642.870 ± 27.445 360.059 ± 346.804  
 7 7201.064 ± 0.241 0.040 ± 0.007 64.451 ± 31.440 17.477 ± 7.124 6633.142 ± 3.875 318.452 ± 220.787  
 8 7200.968 ± 0.093 0.153 ± 0.061 160.083 ± 90.902 15.855 ± 3.352 6624.526 ± 4.914 294.216 ± 220.045  
 

IM
DB
-B
IN
AR
Y Ac
tio
n

5 2.499 ± 0.304 10.702 ± 0.038 15.002 ± 1.436 45.802 ± 33.538 4039.482 ± 460.117 91.798 ± 22.387  
 6 2.913 ± 0.185 10.912 ± 0.107 82.564 ± 50.800 70.076 ± 29.706 4002.983 ± 324.241 498.072 ± 293.310  
 7 6.771 ± 0.914 10.974 ± 0.108 144.109 ± 29.075 97.650 ± 35.220 3774.532 ± 452.741 479.132 ± 358.399  
 8 132.072 ± 51.895 19.732 ± 13.523 151.082 ± 86.939 81.356 ± 40.307 3599.583 ± 263.459 527.060 ± 645.516  
 

Ro
ma
nc
e

5 2.579 ± 0.627 0.691 ± 0.193 15.156 ± 3.558 1171.962 ± 1050.303 3966.199 ± 258.170 181.780 ± 213.022  
 6 2.493 ± 0.337 129.888 ± 81.306 29.177 ± 15.858 824.337 ± 1097.327 4062.581 ± 484.982 117.554 ± 48.547  
 7 6.489 ± 1.069 146.370 ± 83.668 65.645 ± 66.173 775.247 ± 1035.251 3956.617 ± 461.542 490.110 ± 495.073  
 8 7.682 ± 1.540 23.087 ± 17.984 25.137 ± 4.034 1233.731 ± 1104.846 3905.860 ± 669.663 175.041 ± 32.839  
 

RE
DD
IT
-B
IN
AR
Y

Di
scu
ssi
on

5 5.810 ± 0.812 0.028 ± 0.008 14.428 ± 1.579 OOM OOM OOM  
 6 26.655 ± 9.815 0.105 ± 0.072 18.422 ± 3.013 OOM OOM OOM  
 7 140.175 ± 96.354 0.658 ± 0.165 20.056 ± 1.840 OOM OOM OOM  
 8 1021.709 ± 122.451 0.964 ± 1.695 32.622 ± 13.243 OOM OOM OOM  
 

QA

5 17.026 ± 2.842 15.222 ± 6.558 12.253 ± 0.280 OOM OOM OOM  
 6 130.413 ± 32.799 16.263 ± 9.934 15.880 ± 0.901 OOM OOM OOM  
 7 568.535 ± 99.300 40.655 ± 17.155 19.099 ± 0.664 OOM OOM OOM  
 8 4867.402 ± 885.642 48.459 ± 55.990 21.044 ± 0.709 OOM OOM OOM  
Runtime for MIPExplainer reported to convergence unless the time limit was reached.
Fig. 4. Finding separation boundary exemplar graphs by solving Eq. (Boundary Explanation) via MIPExplainer on Is_Acyclic (a) and Shapes (b, c, and d) data.
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Fig. 5. Paired explanations for several classes from the Shapes Dataset, given a budget of 3 changes to the adjacency matrix. We aim to maximize the difference in predicted 
probability for each class between the blue graphs on top (lower probability) and the orange graphs on bottom (higher probability). Differing edges within each pair are highlighted 
in red.
4.3.2. Paired explanations
Fig.  5 shows explanations generated by optimizing Eq. (Paired 

Explanation) for each class in the Shapes dataset with a budget of 𝛿 = 3
edge insertions/deletions. The orange graphs on bottom correspond to 
𝐺1 in Eq. (Paired Explanation), and are predicted with higher probabil-
ity than the blue graphs on top corresponding to 𝐺2. The explanation 
for the Grid class shows edges being added to ensure that the graph 
is composed exclusively of 4-cycles, the defining characteristic of this 
class’s prototype. The Wheel explanation starts as a graph that looks 
more like the Star graphs from the dataset after noise is added, but then 
additional edges are added between the outer nodes to create a rim. In 
the Star class explanation, we see that edges are actually taken away 
from the higher graph to get to the lower graph. The edges are only 
removed from the nodes with the lowest degrees, creating Star class’s 
defining characteristic. For the Lollipop class, the explanation does not 
seem to create any distinctive features. However, looking at the sets 
of logits for both graphs, we see that the terms involving the lower-
probability (blue) graph dominated the objective, meaning that the 
relevant change for this explanation is actually the removal of features 
indicative of another class, in this case Stars. Fig.  6 shows the result 
of adding the constraint that 𝐺1 actually be predicted to the correct 
class by the GNN (i.e. that its logit is at least as large as the maximum 
of the other logits). Interestingly, although the changes between the 
graphs can mostly be interpreted in the same way as in Fig.  5, the 
bottom graphs are less immediately recognizable as instances of the 
corresponding class, which is opposite to the result we expected from 
adding the new constraint.

5. Conclusions and discussion

Despite the ability of GNNs to model complex patterns in graph-
structured data, their lack of transparency remains one of the major 
factors hindering their application in a wide range of domains. Model-
level explanations of these networks are key to understanding the 
information they learn and improving their trust and reliability. In 
order to address shortcomings that limit the use of existing methods 
in most real-world situations, this work proposes MIPExplainer for 
generating post-hoc model-level explanations. Without a way to objec-
tively evaluate their quality, it is essential that generated explanations 
are truly high-quality solutions of optimization problems that are not 
sensitive to user-defined hyperparameters. MIPExplainer achieves this 
by avoiding the use of both weighted regularizers and stochastic op-
timization, instead focusing on maximizing a simpler objective with 
deterministic methods that are able to prove the global optimality 
15 
of the generated solutions. Minimal assumptions are made about the 
distributions of graphs and their features, and no secondary models are 
trained in the process.

The proposed method has limitations which we hope to address in 
future work. While it is more general than previous methods without 
specific data assumptions, it also requires different GNN layers to be in-
dividually encoded with constraints, and may require piecewise-linear 
approximations for highly nonlinear components. From a practical 
perspective, the runtime of MIPExplainer as described here is the most 
significant drawback. Reducing symmetries in the encoding can greatly 
improve runtime, but this is challenging in general, and more work 
is required to understand which symmetries are the most costly when 
optimizing over sets of graphs. Despite these limitations, we observe 
that the proposed method is able to find reasonable explanations.
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Fig. 6. Figures generated in the same way as in Fig.  5, except with a budget of 4 and the added constraint that the GNN must classify the orange graphs to the corresponding 
classes.

Fig. 7. Solver metrics for several runs explaining the mutagen class of MUTAG (left), the acyclic class of Is_Acyclic (middle), and the wheel class of Shapes (right) with 7 nodes: 
On the top, the current best solution’s objective (blue) and upper bound (red) converging to the same global optimum (the dotted black line). On the bottom, the number of 
explored (green)/unexplored (orange) nodes during the search.
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Table 9
Average edit distance between 5 generated example graphs. The time limit was two hours for all experiments. MIPExplainer had the lowest average edit distance in almost all 
experiments.
 Dataset Class Method: Average edit distance
 # Nodes MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN  
 

Sh
ap
es

Gr
id

5 0.000 ± 0.000 4.400 ± 2.107 1.200 ± 0.748 1.600 ± 1.960 2.200 ± 1.661 0.000 ± 0.000 
 6 0.000 ± 0.000 2.600 ± 0.917 1.000 ± 0.632 2.400 ± 1.960 2.200 ± 0.600 2.333 ± 1.374 
 7 0.000 ± 0.000 3.000 ± 0.894 3.400 ± 1.855 1.600 ± 1.960 2.600 ± 0.800 1.400 ± 0.917 
 8 0.000 ± 0.000 4.200 ± 0.872 6.200 ± 2.441 2.400 ± 1.960 3.200 ± 0.600 1.800 ± 0.600 
 

Lo
llip
op

5 0.000 ± 0.000 2.800 ± 1.249 1.600 ± 1.428 1.200 ± 0.980 1.600 ± 0.663 1.200 ± 0.980 
 6 0.000 ± 0.000 3.000 ± 0.894 2.000 ± 0.894 3.000 ± 2.449 3.600 ± 1.428 1.200 ± 0.980 
 7 0.000 ± 0.000 4.000 ± 1.000 4.000 ± 1.000 3.600 ± 4.409 6.000 ± 3.098 1.200 ± 0.980 
 8 0.000 ± 0.000 4.400 ± 1.356 6.000 ± 2.145 5.600 ± 6.859 4.600 ± 0.490 2.200 ± 1.077 
 

Sta
r

5 0.000 ± 0.000 5.200 ± 2.272 1.200 ± 0.980 0.000 ± 0.000 1.600 ± 1.428 1.200 ± 0.980 
 6 0.000 ± 0.000 2.600 ± 0.663 1.000 ± 0.632 0.000 ± 0.000 2.200 ± 1.077 1.400 ± 0.917 
 7 0.000 ± 0.000 3.200 ± 0.748 3.400 ± 1.200 0.000 ± 0.000 4.800 ± 2.088 1.200 ± 0.980 
 8 0.000 ± 0.000 4.600 ± 1.356 6.600 ± 3.611 0.000 ± 0.000 4.400 ± 1.685 1.800 ± 0.600 
 

W
he
el

5 0.000 ± 0.000 1.800 ± 0.980 0.600 ± 0.490 1.800 ± 1.470 1.600 ± 0.800 1.000 ± 1.000 
 6 0.000 ± 0.000 4.000 ± 1.183 2.000 ± 0.775 3.600 ± 2.939 2.000 ± 1.342 0.800 ± 0.980 
 7 0.000 ± 0.000 3.400 ± 1.428 5.200 ± 2.750 3.600 ± 4.409 3.400 ± 1.356 1.600 ± 0.800 
 8 3.000 ± 2.049 4.000 ± 0.894 8.000 ± 3.924 7.200 ± 5.879 4.600 ± 2.059 2.200 ± 1.077 
 

Is_
Ac
yc
lic

Ac
yc
lic

5 0.000 ± 0.000 3.000 ± 1.549 0.600 ± 0.490 0.000 ± 0.000 1.600 ± 0.663 0.000 ± 0.000 
 6 0.600 ± 0.490 3.200 ± 1.077 2.400 ± 1.200 0.000 ± 0.000 2.400 ± 1.114 1.600 ± 0.800 
 7 0.000 ± 0.000 3.000 ± 1.000 4.000 ± 1.414 0.000 ± 0.000 3.400 ± 0.917 2.400 ± 1.200 
 8 0.000 ± 0.000 4.600 ± 1.020 4.000 ± 0.775 0.000 ± 0.000 4.800 ± 1.536 2.600 ± 0.917 
 

Cy
cli
c

5 0.000 ± 0.000 2.600 ± 1.428 1.200 ± 0.600 3.000 ± 2.191 1.600 ± 0.490 0.800 ± 0.980 
 6 0.000 ± 0.000 2.200 ± 1.249 2.800 ± 1.077 2.400 ± 1.960 2.600 ± 1.356 1.400 ± 0.917 
 7 0.000 ± 0.000 3.000 ± 1.000 3.400 ± 1.744 3.000 ± 2.449 4.200 ± 1.778 2.000 ± 1.549 
 8 0.000 ± 0.000 4.600 ± 1.020 5.600 ± 1.497 5.000 ± 3.550 4.600 ± 2.154 2.000 ± 1.265 
 

MU
TA
G Mu

tag
en

5 0.000 ± 0.000 7.000 ± 1.483 5.200 ± 1.327 0.800 ± 0.980 4.800 ± 1.661 2.800 ± 0.872 
 6 0.000 ± 0.000 7.300 ± 1.616 7.000 ± 1.414 1.200 ± 0.980 5.400 ± 1.497 3.000 ± 1.000 
 7 0.000 ± 0.000 8.500 ± 1.285 8.500 ± 1.500 0.000 ± 0.000 6.400 ± 1.356 3.700 ± 1.269 
 8 0.000 ± 0.000 9.600 ± 2.458 10.300 ± 1.345 1.200 ± 0.980 7.400 ± 0.800 3.600 ± 0.800 
 

No
nm
uta
ge
n 5 0.000 ± 0.000 5.800 ± 1.327 4.600 ± 1.428 0.000 ± 0.000 4.400 ± 1.497 1.600 ± 0.800 

 6 0.000 ± 0.000 7.500 ± 1.204 7.000 ± 1.549 0.000 ± 0.000 4.600 ± 0.917 2.500 ± 0.806 
 7 2.800 ± 1.327 8.400 ± 1.428 7.700 ± 0.781 0.000 ± 0.000 7.100 ± 1.446 3.900 ± 0.700 
 8 9.600 ± 7.838 9.500 ± 1.025 10.400 ± 2.107 0.000 ± 0.000 7.200 ± 2.272 4.600 ± 1.200 
 

NC
I1

Ac
tiv
e

5 2.000 ± 2.449 5.900 ± 1.375 4.800 ± 1.536 3.600 ± 2.939 5.500 ± 1.025 1.833 ± 0.373 
 6 10.100 ± 6.188 6.800 ± 0.872 6.900 ± 1.136 3.200 ± 3.919 6.400 ± 0.800 3.400 ± 1.020 
 7 10.400 ± 4.079 8.000 ± 1.000 8.100 ± 0.539 3.200 ± 3.919 7.200 ± 1.600 4.000 ± 1.612 
 8 10.200 ± 2.600 9.800 ± 0.748 9.900 ± 1.921 4.800 ± 3.919 8.800 ± 1.720 5.000 ± 1.183 
 

No
n-A
cti
ve

5 0.000 ± 0.000 6.200 ± 0.980 4.600 ± 1.020 2.400 ± 2.939 4.600 ± 1.114 3.167 ± 0.687 
 6 0.800 ± 0.980 8.400 ± 1.281 5.800 ± 1.077 2.400 ± 2.939 6.200 ± 1.249 1.500 ± 0.806 
 7 0.000 ± 0.000 8.600 ± 1.356 8.100 ± 0.539 2.400 ± 2.939 7.700 ± 0.900 4.200 ± 0.872 
 8 1.200 ± 1.470 14.300 ± 4.406 9.400 ± 0.917 3.600 ± 2.939 8.500 ± 1.118 4.200 ± 1.470 
 

IM
DB
-B
IN
AR
Y Ac
tio
n

5 0.000 ± 0.000 3.000 ± 1.342 0.800 ± 0.600 1.800 ± 1.470 0.000 ± 0.000 1.000 ± 1.000 
 6 0.000 ± 0.000 1.200 ± 0.600 1.400 ± 1.020 0.000 ± 0.000 1.600 ± 1.960 0.800 ± 0.980 
 7 0.000 ± 0.000 3.600 ± 1.281 7.200 ± 3.789 3.600 ± 4.409 12.600 ± 11.629 2.200 ± 1.077 
 8 0.000 ± 0.000 5.400 ± 1.020 6.400 ± 2.107 9.600 ± 5.463 5.400 ± 3.382 2.200 ± 0.872 
 

Ro
ma
nc
e

5 0.000 ± 0.000 3.600 ± 1.685 0.600 ± 0.490 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 1.000 
 6 0.000 ± 0.000 3.800 ± 1.327 3.200 ± 1.400 0.000 ± 0.000 2.400 ± 1.960 1.600 ± 1.200 
 7 0.800 ± 0.980 6.200 ± 2.993 3.800 ± 1.778 0.000 ± 0.000 0.000 ± 0.000 2.000 ± 0.894 
 8 0.000 ± 0.000 4.000 ± 0.894 5.800 ± 2.182 0.000 ± 0.000 5.400 ± 4.409 1.200 ± 0.980 
 

RE
DD
IT
-B
IN
AR
Y

Di
scu
ssi
on

5 0.000 ± 0.000 2.000 ± 0.894 0.400 ± 0.490 OOM OOM OOM  
 6 0.000 ± 0.000 3.200 ± 0.872 2.000 ± 1.000 OOM OOM OOM  
 7 0.000 ± 0.000 3.800 ± 1.249 2.800 ± 1.327 OOM OOM OOM  
 8 0.000 ± 0.000 11.000 ± 8.649 6.000 ± 2.408 OOM OOM OOM  
 

QA

5 0.000 ± 0.000 2.000 ± 0.894 2.200 ± 1.327 OOM OOM OOM  
 6 0.000 ± 0.000 3.200 ± 1.166 2.400 ± 1.281 OOM OOM OOM  
 7 0.000 ± 0.000 4.800 ± 1.327 2.600 ± 0.800 OOM OOM OOM  
 8 0.000 ± 0.000 4.400 ± 1.744 4.400 ± 1.356 OOM OOM OOM  
Table 10
Logits for Is_Acyclic explanation graphs, averaged over 5 runs with random initial solutions.
 Class # Nodes Method MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN  
 

Acyclic

5 Cyclic Logit −8.981 ± 0.000 −1.343 ± 4.048 6.417 ± 0.709 −8.981 ± 0.000 3.007 ± 1.337 −4.913 ± 0.000 
 Acyclic Logit 11.896 ± 0.000 1.835 ± 5.022 −7.456 ± 0.800 11.896 ± 0.000 −3.581 ± 1.553 6.327 ± 0.000  
 6 Cyclic Logit −8.635 ± 1.489 1.452 ± 4.292 7.333 ± 1.891 −8.981 ± 0.000 5.044 ± 1.616 −5.479 ± 0.827 
 Acyclic Logit 11.460 ± 2.016 −1.577 ± 5.222 −8.490 ± 2.134 11.896 ± 0.000 −5.908 ± 1.823 7.105 ± 1.121  
 7 Cyclic Logit −10.291 ± 0.000 4.607 ± 1.646 6.520 ± 1.742 −8.981 ± 0.000 6.954 ± 1.615 −4.769 ± 1.472 
 Acyclic Logit 13.742 ± 0.000 −5.415 ± 1.857 −7.573 ± 1.965 11.896 ± 0.000 −8.063 ± 1.822 6.150 ± 2.001  
 8 Cyclic Logit −10.754 ± 0.000 4.924 ± 1.633 6.372 ± 1.884 −8.981 ± 0.000 8.708 ± 1.872 −4.675 ± 1.033 
 Acyclic Logit 14.409 ± 0.000 −5.771 ± 1.843 −7.400 ± 2.131 11.896 ± 0.000 −10.042 ± 2.112 6.029 ± 1.402  
 (continued on next page)
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Table 10 (continued).
 Class # Nodes Method MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN  
 

Cyclic

5 Cyclic Logit 7.194 ± 0.000 −5.769 ± 2.112 5.665 ± 1.055 −2.178 ± 3.873 3.257 ± 1.516 −5.306 ± 0.879 
 Acyclic Logit −8.333 ± 0.000 7.516 ± 2.844 −6.609 ± 1.191 2.853 ± 4.890 −3.863 ± 1.755 6.860 ± 1.192  
 6 Cyclic Logit 10.260 ± 0.000 0.200 ± 4.304 6.997 ± 2.119 0.674 ± 4.435 5.378 ± 2.708 −5.640 ± 0.884 
 Acyclic Logit −11.793 ± 0.000 −0.080 ± 5.363 −8.111 ± 2.391 −0.639 ± 5.466 −6.232 ± 3.152 7.321 ± 1.199  
 7 Cyclic Logit 13.488 ± 0.000 −0.293 ± 1.360 7.080 ± 1.031 1.128 ± 4.375 5.335 ± 2.873 −4.442 ± 1.139 
 Acyclic Logit −15.436 ± 0.000 0.524 ± 1.625 −8.205 ± 1.164 −1.197 ± 5.336 −6.136 ± 3.436 5.706 ± 1.549  
 8 Cyclic Logit 16.870 ± 0.000 4.585 ± 1.148 7.587 ± 1.127 2.239 ± 3.562 6.821 ± 1.762 −4.824 ± 1.138 
 Acyclic Logit −19.184 ± 0.000 −5.328 ± 1.362 −8.777 ± 1.271 −2.602 ± 4.278 −7.912 ± 1.988 6.231 ± 1.548  
Table 11
Logits for MUTAG explanation graphs, averaged over 5 runs with random initial solutions.
 Class # Nodes Method MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN  
 

Mutagen

5 Nonmutagen Logit −19.249 ± 0.000 −0.422 ± 5.318 3.825 ± 5.060 6.220 ± 0.209 1.450 ± 2.023 4.409 ± 0.430  
 Mutagen Logit 11.269 ± 0.000 4.048 ± 7.581 −0.041 ± 5.502 −7.044 ± 0.251 −1.568 ± 2.015 −4.862 ± 0.521 
 6 Nonmutagen Logit −30.439 ± 0.000 −7.649 ± 7.386 −1.738 ± 8.144 6.126 ± 0.256 2.120 ± 1.779 4.946 ± 0.556  
 Mutagen Logit 17.673 ± 0.000 18.074 ± 13.474 7.321 ± 8.283 −6.932 ± 0.307 −2.265 ± 1.779 −5.511 ± 0.674 
 7 Nonmutagen Logit −43.654 ± 0.000 −9.854 ± 13.851 −1.755 ± 3.123 5.846 ± 0.000 2.416 ± 1.185 4.303 ± 0.729  
 Mutagen Logit 25.229 ± 0.000 20.275 ± 23.446 4.828 ± 6.009 −6.595 ± 0.000 −2.456 ± 1.418 −4.735 ± 0.883 
 8 Nonmutagen Logit −59.041 ± 0.000 −21.218 ± 12.229 −1.859 ± 5.728 6.033 ± 0.256 3.268 ± 1.320 4.579 ± 0.429  
 Mutagen Logit 34.029 ± 0.000 41.498 ± 19.722 5.446 ± 7.365 −6.820 ± 0.307 −3.480 ± 1.596 −5.071 ± 0.520 
 

Nonmutagen

5 Nonmutagen Logit 8.614 ± 0.000 1.887 ± 4.245 −3.481 ± 1.849 7.492 ± 0.000 2.270 ± 2.323 3.709 ± 1.586  
 Mutagen Logit −9.948 ± 0.000 −0.107 ± 5.117 8.834 ± 2.699 −8.568 ± 0.000 −2.472 ± 2.443 −4.124 ± 1.677 
 6 Nonmutagen Logit 8.294 ± 0.000 7.146 ± 8.787 2.359 ± 3.898 7.492 ± 0.000 3.582 ± 0.897 4.751 ± 0.493  
 Mutagen Logit −9.555 ± 0.000 −0.851 ± 6.609 1.204 ± 6.986 −8.568 ± 0.000 −3.859 ± 1.083 −5.274 ± 0.596 
 7 Nonmutagen Logit 8.086 ± 0.188 −3.194 ± 7.405 −0.841 ± 6.120 7.492 ± 0.000 0.906 ± 2.465 4.028 ± 0.997  
 Mutagen Logit −9.304 ± 0.230 10.138 ± 9.418 3.811 ± 8.576 −8.568 ± 0.000 −1.147 ± 2.280 −4.402 ± 1.208 
 8 Nonmutagen Logit 7.267 ± 0.112 −5.436 ± 10.869 −9.350 ± 15.218 7.492 ± 0.000 1.803 ± 1.308 4.636 ± 0.600  
 Mutagen Logit −8.306 ± 0.141 13.410 ± 16.078 19.037 ± 22.654 −8.568 ± 0.000 −1.811 ± 1.494 −5.139 ± 0.728 
Table 12
Logits for Shapes explanation graphs, averaged over 5 runs with random initial solutions.
 Class # Nodes Method Lollipop logit Wheel logit Grid logit Star logit  
 

Grid

5

MIPExplainer −1.343 ± 0.000 −19.762 ± 0.000 9.577 ± 0.000 −20.261 ± 0.000  
 GNNInterpreter −10.019 ± 6.822 −38.818 ± 40.875 −8.103 ± 23.501 −14.756 ± 18.554 
 XGNN −5.121 ± 1.118 3.259 ± 6.784 8.262 ± 0.688 −31.471 ± 4.109  
 PAGE −11.737 ± 0.000 −69.500 ± 0.000 2.554 ± 0.000 −5.368 ± 0.000  
 D4Explainer −1.074 ± 3.791 −29.853 ± 20.463 3.409 ± 9.946 −17.471 ± 9.216  
 KnowGNN −19.235 ± 0.000 −76.560 ± 0.000 −35.927 ± 0.000 3.033 ± 0.000  
 

6

MIPExplainer −0.846 ± 0.000 −1.949 ± 0.000 9.154 ± 0.000 −31.297 ± 0.000  
 GNNInterpreter −3.386 ± 3.512 −21.545 ± 11.607 −6.520 ± 11.184 −17.602 ± 8.887  
 XGNN −4.907 ± 1.180 5.398 ± 3.124 4.816 ± 2.687 −30.366 ± 3.257  
 PAGE −11.737 ± 0.000 −69.500 ± 0.000 2.554 ± 0.000 −5.368 ± 0.000  
 D4Explainer −2.050 ± 2.131 −21.696 ± 12.831 5.361 ± 5.933 −19.014 ± 3.347  
 KnowGNN −16.871 ± 1.435 −71.344 ± 4.756 −39.940 ± 14.219 3.606 ± 4.123  
 

7

MIPExplainer −1.269 ± 0.000 −11.014 ± 0.000 9.972 ± 0.000 −25.884 ± 0.000  
 GNNInterpreter −2.233 ± 2.319 −5.299 ± 5.715 3.110 ± 3.284 −23.110 ± 2.283  
 XGNN −1.976 ± 0.763 −4.893 ± 2.458 −1.793 ± 7.365 −21.878 ± 3.027  
 PAGE −11.737 ± 0.000 −69.500 ± 0.000 2.554 ± 0.000 −5.368 ± 0.000  
 D4Explainer −4.218 ± 1.879 4.195 ± 4.249 4.767 ± 2.175 −29.559 ± 1.943  
 KnowGNN −15.973 ± 1.540 −71.334 ± 4.394 −29.122 ± 5.736 0.596 ± 0.118  
 

8

MIPExplainer −1.502 ± 0.000 −8.745 ± 0.000 9.270 ± 0.000 −26.275 ± 0.000  
 GNNInterpreter −2.884 ± 3.272 −11.408 ± 6.947 1.346 ± 5.852 −19.579 ± 3.193  
 XGNN −2.444 ± 1.782 −5.672 ± 8.371 −7.951 ± 13.444 −19.534 ± 7.940  
 PAGE −11.737 ± 0.000 −69.500 ± 0.000 2.554 ± 0.000 −5.368 ± 0.000  
 D4Explainer −2.016 ± 0.977 −2.345 ± 3.262 1.738 ± 0.764 −24.737 ± 1.756  
 KnowGNN −14.107 ± 1.599 −65.919 ± 3.523 −35.266 ± 6.608 0.809 ± 2.823  
 (continued on next page)
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Table 12 (continued).
 Class # Nodes Method Lollipop logit Wheel logit Grid logit Star logit  
 

Lollipop

5

MIPExplainer −2.791 ± 0.000 −25.569 ± 0.000 −5.128 ± 0.000 −19.403 ± 0.000  
 GNNInterpreter −8.329 ± 8.233 −47.927 ± 27.593 −15.098 ± 19.693 −9.227 ± 13.375  
 XGNN −5.837 ± 0.697 −0.149 ± 22.146 3.951 ± 10.263 −30.313 ± 12.808 
 PAGE −3.241 ± 0.616 −16.925 ± 11.837 0.406 ± 7.577 −22.603 ± 4.382  
 D4Explainer −2.714 ± 2.925 −18.326 ± 25.050 5.298 ± 6.730 −23.279 ± 13.321 
 KnowGNN −16.735 ± 2.282 −69.864 ± 6.113 −44.351 ± 7.689 3.099 ± 0.060  
 

6

MIPExplainer 1.580 ± 0.000 −21.554 ± 0.000 −11.776 ± 0.000 −16.268 ± 0.000  
 GNNInterpreter −3.452 ± 3.391 −22.403 ± 11.090 −3.795 ± 8.878 −15.728 ± 7.512  
 XGNN −2.709 ± 1.291 −1.503 ± 3.706 2.021 ± 0.575 −25.136 ± 2.219  
 PAGE −2.110 ± 0.411 −16.864 ± 14.432 −3.108 ± 2.388 −18.305 ± 1.999  
 D4Explainer −3.640 ± 2.227 −2.081 ± 11.177 2.017 ± 10.966 −26.423 ± 9.002  
 KnowGNN −16.783 ± 1.646 −71.698 ± 5.047 −34.148 ± 6.345 1.528 ± 0.143  
 

7

MIPExplainer 2.700 ± 0.000 −18.050 ± 0.000 −5.612 ± 0.000 −21.298 ± 0.000  
 GNNInterpreter −3.375 ± 2.803 −11.131 ± 14.287 −4.683 ± 8.943 −22.799 ± 8.634  
 XGNN −3.732 ± 0.426 −1.052 ± 5.294 1.356 ± 2.642 −24.479 ± 4.387  
 PAGE 0.988 ± 1.323 −21.316 ± 10.528 −1.649 ± 2.181 −13.994 ± 0.448  
 D4Explainer −2.061 ± 1.600 −11.771 ± 17.292 −0.007 ± 2.981 −21.281 ± 5.158  
 KnowGNN −15.534 ± 1.423 −69.752 ± 4.374 −31.187 ± 5.709 0.488 ± 0.132  
 

8

MIPExplainer 7.224 ± 0.000 −15.080 ± 0.000 −3.129 ± 0.000 −19.795 ± 0.000  
 GNNInterpreter −2.637 ± 1.622 −19.483 ± 17.827 1.137 ± 6.363 −18.262 ± 9.027  
 XGNN −2.184 ± 3.039 −13.259 ± 5.576 −6.440 ± 5.380 −14.606 ± 4.264  
 PAGE 3.204 ± 2.252 −30.502 ± 7.832 −3.333 ± 1.101 −9.187 ± 1.162  
 D4Explainer −2.632 ± 2.129 −1.737 ± 7.246 0.536 ± 8.536 −24.909 ± 6.567  
 KnowGNN −13.654 ± 3.770 −66.377 ± 6.921 −29.037 ± 10.104 −0.250 ± 4.152  
 

Star

5

MIPExplainer −16.772 ± 0.000 −67.715 ± 0.000 −72.108 ± 0.000 12.894 ± 0.000  
 GNNInterpreter −12.575 ± 12.292 −42.824 ± 40.005 −31.701 ± 46.376 −8.555 ± 20.510  
 XGNN −5.020 ± 1.008 2.464 ± 5.862 7.990 ± 0.654 −30.609 ± 2.926  
 PAGE −23.863 ± 0.000 −80.654 ± 0.000 −62.974 ± 0.000 8.271 ± 0.000  
 D4Explainer −1.621 ± 2.657 −18.266 ± 16.228 8.843 ± 1.018 −21.837 ± 6.416  
 KnowGNN −17.568 ± 2.282 −72.096 ± 6.113 −41.543 ± 7.689 3.077 ± 0.060  
 

6

MIPExplainer −13.064 ± 0.000 −64.317 ± 0.000 −48.784 ± 0.000 12.183 ± 0.000  
 GNNInterpreter −3.980 ± 2.651 −21.691 ± 9.404 −3.585 ± 12.975 −15.661 ± 2.185  
 XGNN −4.822 ± 1.125 5.352 ± 3.101 4.037 ± 2.655 −29.810 ± 3.144  
 PAGE −23.863 ± 0.000 −80.654 ± 0.000 −62.974 ± 0.000 8.271 ± 0.000  
 D4Explainer −4.689 ± 2.122 5.163 ± 7.173 7.551 ± 3.550 −32.577 ± 6.240  
 KnowGNN −16.685 ± 1.790 −71.660 ± 5.099 −34.286 ± 6.539 1.595 ± 0.128  
 

7

MIPExplainer −11.148 ± 0.000 −61.412 ± 0.000 −33.850 ± 0.000 13.072 ± 0.000  
 GNNInterpreter −2.507 ± 2.511 −22.296 ± 21.034 −3.210 ± 13.723 −18.741 ± 8.891  
 XGNN −1.469 ± 2.153 −9.213 ± 5.345 −6.549 ± 8.455 −18.000 ± 4.776  
 PAGE −23.863 ± 0.000 −80.654 ± 0.000 −62.974 ± 0.000 8.271 ± 0.000  
 D4Explainer −3.464 ± 2.565 −0.203 ± 9.555 2.798 ± 4.728 −26.928 ± 7.178  
 KnowGNN −16.053 ± 1.423 −71.349 ± 4.374 −29.102 ± 5.709 0.536 ± 0.132  
 

8

MIPExplainer −10.722 ± 0.000 −58.630 ± 0.000 −23.479 ± 0.000 14.536 ± 0.000  
 GNNInterpreter −3.702 ± 1.427 −7.587 ± 15.924 −1.624 ± 8.923 −21.715 ± 8.531  
 XGNN −1.924 ± 1.894 −8.287 ± 9.256 −11.054 ± 12.549 −18.099 ± 8.888  
 PAGE −23.863 ± 0.000 −80.654 ± 0.000 −62.974 ± 0.000 8.271 ± 0.000  
 D4Explainer −3.208 ± 2.232 −0.567 ± 6.732 2.633 ± 3.657 −25.972 ± 5.453  
 KnowGNN −14.111 ± 1.439 −65.935 ± 3.457 −35.179 ± 6.498 0.813 ± 2.820  
 (continued on next page)
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Table 12 (continued).
 Class # Nodes Method Lollipop logit Wheel logit Grid logit Star logit  
 

Wheel

5

MIPExplainer −6.180 ± 0.000 13.062 ± 0.000 10.323 ± 0.000 −40.319 ± 0.000  
 GNNInterpreter −7.290 ± 7.960 −42.230 ± 28.326 −3.870 ± 18.922 −12.452 ± 10.727 
 XGNN −5.957 ± 0.275 8.335 ± 2.176 8.057 ± 0.745 −34.470 ± 2.362  
 PAGE 0.012 ± 1.856 −23.416 ± 5.004 9.200 ± 0.516 −20.101 ± 0.218  
 D4Explainer −0.106 ± 3.509 −24.328 ± 18.604 6.844 ± 2.234 −20.185 ± 6.592  
 KnowGNN −18.193 ± 2.084 −73.770 ± 5.580 −39.437 ± 7.019 3.060 ± 0.055  
 

6

MIPExplainer −5.616 ± 0.000 6.921 ± 0.000 2.541 ± 0.000 −29.458 ± 0.000  
 GNNInterpreter −4.918 ± 4.503 −18.368 ± 31.653 3.615 ± 6.467 −22.223 ± 14.202 
 XGNN −3.865 ± 1.889 1.860 ± 6.420 3.038 ± 3.642 −27.369 ± 5.667  
 PAGE −0.664 ± 3.710 −22.743 ± 8.427 8.564 ± 0.097 −20.198 ± 0.460  
 D4Explainer −4.891 ± 1.793 −4.316 ± 23.429 7.055 ± 5.290 −27.932 ± 14.974 
 KnowGNN −15.187 ± 1.565 −67.861 ± 4.205 −39.333 ± 5.489 1.689 ± 0.032  
 

7

MIPExplainer −5.723 ± 0.000 8.478 ± 0.000 4.220 ± 0.000 −30.816 ± 0.000  
 GNNInterpreter −4.489 ± 2.121 −5.192 ± 15.185 5.168 ± 3.163 −24.700 ± 9.701  
 XGNN −1.477 ± 4.376 −8.111 ± 10.727 −4.639 ± 12.694 −20.903 ± 8.152  
 PAGE 0.436 ± 3.599 −24.944 ± 8.838 7.936 ± 1.563 −19.917 ± 0.122  
 D4Explainer −4.297 ± 2.530 −0.655 ± 19.448 6.685 ± 2.795 −29.687 ± 9.721  
 KnowGNN −15.454 ± 1.505 −69.737 ± 4.388 −31.206 ± 5.727 0.548 ± 0.145  
 

8

MIPExplainer −4.686 ± 1.538 5.669 ± 5.114 1.911 ± 0.883 −28.019 ± 2.646  
 GNNInterpreter −2.193 ± 0.699 −5.022 ± 6.210 −5.701 ± 13.464 −20.266 ± 6.735  
 XGNN −1.513 ± 2.686 −11.867 ± 4.893 −3.223 ± 12.412 −17.747 ± 6.596  
 PAGE −1.752 ± 3.467 −15.373 ± 12.346 3.354 ± 4.821 −19.611 ± 0.229  
 D4Explainer −2.942 ± 2.183 −2.672 ± 8.559 0.716 ± 5.848 −24.973 ± 5.856  
 KnowGNN −14.515 ± 1.147 −67.331 ± 4.279 −33.354 ± 11.934 0.913 ± 2.812  
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