
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Explaining Graph Neural Networks with Mixed-Integer Programming

Anonymous Authors1

Abstract
Graph Neural Networks (GNNs) provide state-
of-the-art graph learning performance, but their
lack of transparency hinders our ability to under-
stand and trust them, ultimately limiting the areas
where they can be applied. Many methods exist
to explain individual predictions made by GNNs,
but there are fewer ways to gain more general
insight into the patterns they have been trained to
identify. Most existing methods for model-level
GNN explanations attempt to generate graphs that
exemplify these patterns, but the discreteness of
graphs and the nonlinearity of deep GNNs make
finding such graphs difficult. In this paper, we
formulate the search for an explanatory graph as
a mixed-integer programming (MIP) problem, in
which decision variables specify the explanation
graph and the objective function represents the
quality of the graph as an explanation for a GNN’s
predictions of an entire class in the dataset. This
approach, which we call MIPExplainer, allows us
to directly optimize over the discrete input space
and find globally optimal solutions with a mini-
mal number of hyperparameters. MIPExplainer
outperforms existing methods in finding accurate
and consistent explanations on both synthetic and
real-world datasets.

1. Introduction
Graph neural networks (GNNs), such as graph convolutional
networks (GCN) (Kipf & Welling, 2016), GraphSAGE net-
works (Hamilton et al., 2017), and graph attention networks
(GAT) (Veličković et al., 2017), provide a family of pow-
erful tools for modelling graphs that learn from both the
features contained in nodes and edges and the structure of
the graph itself. However, without being able to explain the
patterns GNNs rely on to make predictions, it is impossible
to justify their use in applications where trust and safety are
important, and there is no way to extract useful information
from them. These problems have motivated a significant
amount of research into techniques for GNN explainability.

Research on explainable deep learning proceeds along two
lines. One line is to develop intrinsically explainable meth-

ods, which modify standard neural networks or the training
process so that final models naturally expose information
about the importance and interaction of input features. Sev-
eral proposed GNN architectures aim to achieve inherent
explainability, for example, ProtGNN (Zhang et al., 2022)
and GIB (Yu et al., 2020). The disadvantage of this approach
is that changing the GNN itself to enforce explainability gen-
erally comes at the cost of performance. As a result, there
is great interest in the second line of research, post-hoc
explainability, which aims to interpret networks that have
already been trained.

Post-hoc explanation for individual predictions has been
extensively explored (see surveys from (Liu et al., 2021;
Yuan et al., 2023; Kakkad et al., 2023)), but fewer methods
exist to explain the overall patterns used by GNNs to dif-
ferentiate classes (Yuan et al., 2020; Wang & Shen, 2022;
Azzolin et al., 2022). There are several common problems
among existing approaches for model-level GNN explana-
tion, which focus on generating graphs to reflect knowledge
learned by a model. For one, they often have many hyper-
parameters that can change the generated explanations, and
generating a high-quality explanation may require setting
them within a specific range of values. Without a single
metric to quantify explanation quality, it is impossible to
see if a certain choice of hyperparameters was effective, let
alone compare the results across different hyperparameter
settings. Furthermore, many methods randomly initialize
parameters used to generate the explanations, and then rely
on stochastic gradient optimization to assign them values.
Due to the stochastic nature of the approach and the neces-
sity of setting a maximum number of iterations, the final
explanation’s objective value might be far away from the
global optimum. More importantly, it leads to significant
variation in the explanations across different random initial-
izations of learned parameters, even with the same choices
of hyperparameters. Due to the lack of consistency and in-
ability to guarantee solution quality, generating trustworthy
global explanations in this way is almost impossible.

Because generating a graph is naturally a discrete process,
we propose a new explanation method based on mixed-
integer programs (MIPs), which we call MIPExplainer, for
finding graph structures or subgraphs that maximally differ-
entiate distinct classes as reported by the GNN. A MIP de-
fines a constrained optimization problem where some of the

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2024

decision variables must take integer values. They are com-
monly solved through branch-and-bound, where the original
problem is split into subproblems that partition the set of
feasible solutions and solved recursively, creating a search
tree. Because an upper bound on any of these subproblems
can be found quickly by relaxing the integrality constraints,
large subtrees can be pruned if the upper bound at an in-
ternal node is less than the objective value for a known
solution, improving the tractability of the search. Differing
from current methods that search for a graph maximizing
the output probability of a single class, we also define a
new explanation objective that measures the discriminative
power of the GNN. We further propose a new quantitative
metric to assess the consistency of the explanations from
multiple runs of an explanation method, by measuring the
dissimilarity of the generated graphs. While any appropri-
ate graph distance metric can be used in conjunction with
our framework (Gao et al., 2010), we employ graph edit
distance (Sanfeliu & Fu, 1983b) which is commonly used
in inexact graph matching.

MIPExplainer offers several benefits over existing ap-
proaches. (1) It directly optimizes over the discrete space
of possible input graphs, without any restrictions on types
of node and edge features. The only assumptions we make
about the space of graphs are bounds on the number of
nodes and the magnitude of their features, and we do not
require any assumptions about the underlying distribution
of the training data. (2) It has a minimal number of hyper-
parameters that influence the explanation (only the number
of nodes of the explanation graph must be specified), facil-
itating the application of our approach and mitigating the
effects of bias when analyzing the results. (3) We prove that
our MIP formulation has a globally optimal solution, and in
many cases, we can find and verify this solution. In cases
where this is intractable, MIPExplainer can place an upper
bound on the optimal solution, guaranteeing the quality of
the generated explanation.

1.1. Related Work

GNN interpretation has been largely focused on instance-
level explanation, which aims to explain the reasoning be-
hind individual predictions. As identified in (Yuan et al.,
2023), at least six categories of instance-level GNN ex-
planation methods have been proposed so far: gradient-
based (Pope et al., 2019), perturbation-based (Yuan et al.,
2021; Luo et al., 2020; Ying et al., 2019; Schlichtkrull et al.,
2020), surrogate (Vu & Thai, 2020), generation-based (Lin
et al., 2021), decomposition (Schnake et al., 2021), and
counterfactual-based (Lucic et al., 2022) methods. These
methods do not immediately provide insights into the over-
all patterns a GNN has identified, but it is possible to con-
solidate instance-level explanations to reveal model-level
patterns. For example, we can employ purely statistical

methods to determine whether there are nodes/edges shared
by a significant portion of the individual explanations. A
more recent technique, GLGExplainer (Azzolin et al., 2022),
finds smaller components of the extracted explanations that
can be used to build logical expressions consistent with the
overall GNN’s predictions. However, these methods are lim-
ited by the scope of the training data, and can be influenced
by bias in the dataset. By allowing for explanations to be
out of distribution, we are able to isolate graph structures
that may not appear by themselves without noise in the ac-
tual data. A direct model-level explanation can offer more
faithful explanations, and is more useful for determining the
degree of bias in the model itself.

Relatively few methods exist to explain GNNs at the model
level. XGNN (Yuan et al., 2020) is the most widely used,
and serves as the only baseline in several recent papers that
focus on similar objectives (Azzolin et al., 2022; Saha et al.,
2023a; Shin et al., 2022; Wang & Shen, 2022). These meth-
ods aim to generate graphs that exemplify graph structures
used by a trained GNN for making classifications, without
straying too far from the distribution of the training data
where the model is not well-defined. XGNN trains a sec-
ond neural network by reinforcement learning to generate
graphs that obey explicit generation rules and maximize
the original GNN’s prediction for a specific class. GNNIn-
terpreter (Wang & Shen, 2022) and GraphEx (Saha et al.,
2023b) avoid training a second neural network by assum-
ing that the graphs in the dataset are sampled from a set of
underlying distributions parameterized by continuous latent
parameters. In particular, GNNInterpreter defines an objec-
tive function similar to XGNN during training, maximizing
a target class’s logit while penalizing the distance between
the embedding of the generated graph and the mean embed-
ding of the training data to keep explanations in-distribution,
and learns parameters through Monte Carlo gradient estima-
tion. GCExplainer (Magister et al., 2021) and the work by
(Xuanyuan et al., 2023) are also global explanation methods,
but both focus on explaining GNNs via concept genera-
tion, which is a separate approach that relies on identifying
patterns in activation maps of the training data.

In the past, discrete optimization techniques have been ap-
plied to deep neural networks, such as in (Cheon, 2022),
(Botoeva et al., 2020), and (Ansari et al., 2022). However,
these existing methods were only defined for layers con-
sisting of a linear transformation with ReLU activations,
and solve constraint satisfaction or optimization problems
related to inverse design and verification. This work will
reformulate the optimization problem for explainability and
generalize the application of mixed-integer programming on
standard neural networks to a range of GNN architectures.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2024

2. MIPExplainer
Our model-level explanation seeks to optimize an input
graph G = (X,A) on which the GNN maximally differ-
entiates one class from the rest, where X contains the
d attributes for each of N graph nodes as row vectors
and A = (aij) represents the N by N adjacency matrix.
We focus on the case of a binary adjacency matrix where
aij ∈ {0, 1}, so that aij = 1 indicates there is an edge be-
tween nodes i and j. Let a GNN realize a function fc(G, θ)
that maps G to the probabilities of several classes indexed
by c and θ contains all the learned parameters in the GNN.
During the GNN training, G is given and θ needs to be deter-
mined, whereas in many model explanation methods, θ has
been fixed, and we optimize G (i.e., X and A) to maximize
fc(G, θ) (or a related objective).

The proposed MIP will optimize G in terms of the values
of A and X . Each layer of the GNN imposes a set of con-
straints in the MIP. We add decision variables to represent
the output of each layer and add constraints to represent
the computation in that layer. For example, for a fully con-
nected layer, a new matrix of decision variables Y will be
added to the model and constrained with Y = WY ′ + b,
where Y ′ are the decision variables representing the outputs
of a previous layer and W and b are the model’s learned
parameters in this layer. Since the outputs of subsequent lay-
ers are constrained exactly, ultimately all of the constraints
define the feasible region of X and A. We place constraints
on nodes and edges (or entries of A) so that the derived
explanation forms a connected graph with valid features,
and we can further constrain X and A to reduce the number
of candidate solutions for a single graph since the GNN is
permutation equivariant with respect to the order of nodes.
In the subsequent sections, we provide a detailed derivation
of our MIP formulation by discussing the objective function
and the various constraints.

2.1. Objective Function

A typical objective function for explanations contains two
parts: a term related to class prediction and a regularizer that
enforces the generated explanations to be in-distribution. In
this paper, we decide not to apply any regularization in the
objective function in order to minimize the number of hy-
perparameters; please see our detailed discussions in the
Appendix. While maximizing a single logit while disregard-
ing the logits of other classes in the denominator (e.g., as
done by GNNInterpreter) is possible, this may lead to low
quality explanations in some circumstances. Predictions
are made based on the difference between the logits, and
the absolute value of a single logit may be unrelated to the
prediction of the network. To illustrate this, after training
a GNN to classify star graphs and wheel graphs of varying
sizes (a task defined in (Wang & Shen, 2022)), we plotted

the logits it assigned to the training data for both classes in
Figure 1. Note that the maximum logit for the wheel class is
actually assigned to a correctly-classified star graph. Thus,
simply maximizing the logit for wheels will not produce an
effective explanation for the wheel class.

Figure 1. Logits of Star and Wheel
Graphs in the Shapes Dataset

To accurately find class-
discriminative informa-
tion, we should maxi-
mize the difference be-
tween the logit of the tar-
get class and the logit of
the other classes. Max-
imizing the normalized
probability, as done by
XGNN, is possible but
can lead to numerical
instability due to im-
provements getting ex-
ponentially smaller as
the magnitude of the logits increases. We can form an objec-
tive function as a linear combination of all logits but with a
positive coefficient for only the target class, but an optimal
solution may simply minimize one logit while leaving other
logits close to or even greater than the logit of the target
class, resulting in an incorrect explanation. To mitigate this
problem, we can maximize the difference between the logit
of the target class and the maximum of the other classes.
In our observation, this approach is more effective, so we
focus on discussing the following objective function:

max
G

(
fc(G, θ)−max

i ̸=c
(fi(G, θ))

)
, (1)

where fi denotes the ith output of the GNN before the
application of the softmax function for classification.

2.2. Constraints

We make one crucial assumption about the node features,
that their values are bounded by a constant M . We do not
make assumptions on the node features or their distribution.
We also require that the number of nodes in the explanation
n is fixed in advance, which is the only hyperparameter that
changes the optimization problem being solved.

From the range of existing GNN layers, we choose to focus
first on GraphSAGE convolution layers, where the updated
node representations X ′ after a layer are calculated from
existing node representations X with the formula

X ′ = σ(XW1 + Aggregation(X)W2 + b). (2)

The aggregation on a node can be realized, for ex-
ample, by summing its neighbors’ feature vectors, i.e.,
Aggregation(X) = AX .

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2024

Assume that a GNN model has Lc GraphSAGE-based con-
volution layers with sum aggregations and ReLU activa-
tions, followed by a global feature-wise sum pooling layer
and Lf fully connected (FC) layers with ReLU activations.
In total, there are L = Lc + 1 + Lf layers (indexed as
Li, i ∈ 1, . . . , L). We will use the following notations:
the matrix of scalars, W (i), and the vector of scalars, b(i),
denote the GNN’s matrix of learned weights and learned
bias vector in layer i. For convenience, we also denote
X(0) = X , where xij is the jth feature of node i.

We will also add the following decision variables to our
formulation and discuss how they are constrained shortly:
Φ(i) represents the output of layer i before the activation
function, X(i) represents ReLU(Φ(i)), the output of layer
i. We also represent ReLU(−Φ(i)) by B(i), while Z(i) are
binary indicators representing the truth value of Φ(i) > 0
elementwise1. The vector d (with some abuse of notation)
is an indicator representing whether each element of Φ(L)

is the maximum element in the output of layer L except the
target class, i.e., dimension j of d is 1 when dimension j
of Φ(L) is the maximum, while the rest are all 0’s. Here, y
represents the value of the maximum output of the GNN that
is not for the target class. Aside from the binary variables
A, Z(i), and d, all other variables are continuous.

To constrain Φ(i) for the convolutional layers (1 ≤ i ≤ Lc):

Φ(i) = X(i−1)W
(i)
1 +AX(i−1)W

(i)
2 + b(i). (3)

For the pooling layer i = Lc + 1 (with 1 representing a
vector of 1s):

Φ(i) = 1TΦ(i−1), (4)

and for the fully connected layers (Lc + 1 < i ≤ L):

Φ(i) = X(i−1)W
(i)
1 + b(i). (5)

To constrain X(i) for all layers except the pooling and read-
out layers (0 < i ≤ L − 1, i ̸= Lc + 1), we encode the
ReLU output as follows:

X(i) −B(i) = Φ(i), (6)

X(i) ≤MZ(i), (7)

B(i) ≤M(1− Z(i)), (8)

0 ≤ X(i), B(i) ≤M. (9)

For the pooling layer, we simply have that
X(Lc+1) = Φ(Lc+1). To constrain dj and y:

y ≥ X
(L)
̸=c , (10)

y ≤ X
(L)
̸=c + (max(U

X
(L)
̸=c

)1− L
X

(L)
̸=c

)(1− d), (11)∑
j

dj = 1, dj ∈ {0, 1}, (12)

1For elements of Φ(i) exactly equal to 0, the corresponding
values of Z(i) can still be 0, but this will not affect the computation.

where L
X

(L)
̸=c

and U
X

(L)
̸=c

represent lower and upper bounds

for the decision variables in X(L) excluding the output of
class c. A method to calculate these bounds based on the
bounds of the input will be discussed in a later section.
Most of these constraints are linear in terms of the decision
variables except Eq.(3) where decision variables A and X(i)

multiply to form quadratic terms. Because A is binary, these
terms can be equivalently reformulated into linear functions,
which makes the optimization significantly easier. There are
several ways to perform the linearization of quadratic terms
with both continuous and binary variables. We describe one
such method by change of variables (Kalvelagen, 2008). For
a given binary variable a ∈ A and a continuous variable x ∈
X(i) bounded by M , let e = a× x be a new intermediate
decision variable. Let E(i) be the matrix of AX(i) where
entries are all calculated by summing the corresponding
e’s. Constraints in Eq.(3) can be rewritten as follows with
additional bound constraints:

Φ(i) = X(i−1)W
(i)
1 + E(i)W

(i)
2 + b(i), (13)

−Ma ≤ e ≤Ma, (14)
x−M(1− a) ≤ e ≤ x+M(1− a). (15)

Now, our MIP has been transformed into a problem that
maximizes Eq.(1), which can be calculated as X

(L)
c − y

subject to constraints Eq.(13-15) and Eq.(4-12). Note that
this MIP has a convex objective function and all linear con-
straints when integrality is relaxed, so it is a mixed-integer
linear program (MILP).

2.3. Additional Constraints on A and X

Additional constraints can be placed on A and X when
generating explanations. For example, when the input space
is actually graphs with one-hot features, we can constrain
the sum of each row of X(0) to be equal to 1, and X can
also be defined with binary or integer decision variables
when appropriate. If the input graph is undirected, we can
add the constraints aij = aji for all i, j with 0 ≤ ij < n
and i < j. We can prevent self-loops in the explanation by
constraining the diagonal elements of A to be 0.

We also impose a partial ordering on the graph nodes
node1, . . . , noden to ensure that the explanation graph is
connected, or in the case of directed graphs, weakly con-
nected (i.e. connected ignoring the directionality of the
edges). We require that there is at least one edge between
nodei and the set of nodes {nodej | i > j}. This becomes a
constraint on A, and specifically for each i with 0 ≤ i < n,
we add the constraint

∑
{j|i>j}(aij + aji) ≥ 1. These

constraints also partially alleviate the effect of equivariance
(where the same graph can have many different A), because
they reduce the MIP’s feasible region, but not the set of
candidate graphs. This can easily be proven by showing that

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2024

for any (weakly) connected graph, the nodes can be ordered
in a way that satisfies these constraints by running depth-
first-search (DFS) on such a graph ignoring edge directions.
The ith node found by DFS must have been found from one
of the 1 through i− 1 nodes, so this is always true.

2.4. Generalizing to more GNNs

Many highly performant GNN architectures can be perfectly
represented by linear and quadratic constraints, and many
more can be closely approximated. For example, if we
choose our aggregation function to be a feature-wise aver-
age instead of a feature-wise sum, we can simply modify
constraint (4) as Φ(i) = 1TΦ(i−1) 1

N for i = Lc + 1, . If
mean aggregation is used in Eq. (2), we need another set of
decision variables D(i) for each layer, where row j of D(i)

will represent the feature-wise average of the neighbors of
node j. To properly constrain D(i), we add the constraint
1(1TA)D(i) = AX to the model. The elements of D can
be distributed in the multiplications for the left hand side,
and then all the terms can be linearized as previously de-
scribed. Now, constraint (3) can be changed to:

Φ(i) = X(i−1)W
(i)
1 +D(i)W

(i)
2 + b(i)

Consider a message passing layer from a Graph Isomor-
phism Network (Xu et al., 2018), where updated node rep-
resentations are calculated as X ′ = h((A + (1 + ϵ)I)X),
h is a neural network, and ϵ is a constant. We can split
this computation by constraining intermediate decision vari-
ables according to the inner piece, AX + ((1 + ϵ)I)X , and
the application of the neural network to those intermediate
variables, both of which we previously discussed how to ex-
press with linear constraints. Additionally, piecewise-linear
approximations can be created for non-linear functions, al-
lowing us to model different activation functions and the
convolutional layers in GCNs or GATs.

2.5. Existence of Global Optima

We now show that a globally optimal solution to the MIP
problem described above always exists.

Theorem 2.1. Consider the MIP problem that maximizes
the objective function X

(L)
c − y, with decision variables

A, X(i), Φ(i), Z(i), B(i), E(i), dj , y subject to constraints
(4-15). A global optimum exists for this MIP.

Proof. Since all the constraints are linear equalities or in-
equalities (after linearizing the multiplication of binary and
continuous variables in Eq. (3)), they define a polyhedral
feasible region in the space parameterized by the decision
variables if binary variables are relaxed to be ∈ [0, 1]. All
decision variables in the MIP are bounded, either directly
or in terms of bounds on the input variables A and X , so

the feasible set is a closed polytope (a compact set). The
objective function is linear in terms of the decision variables
as calculated by X

(L)
c − y. Therefore, the linear relaxation

of the MIP must have an optimum on the compact feasible
set. In addition, there are a finite number of integer solutions
within the compact feasible region, so at least one of them
must have the maximum objective value.

2.6. Optimization Algorithm

We can employ a branch and bound procedure, along with
cutting planes and heuristics, to find a globally optimal so-
lution efficiently. We present a branch and bound algorithm
in Algorithm 1 to solve our MIP described in the previous
section, which is represented by its set of constraints C
and objective function f . We obtain an initial solution at
the root of a search tree by choosing an initialization graph
G0 = (X0, A0) and applying the GNN to obtain initial
values for all the intermediate variables.

Algorithm 1 MIP Branch and Bound Procedure

1: Input: The constraint set C, the objective function f ,
and an initial graph G0 = (X0, A0)

2: Initialize a queue Q containing only C
3: L← f(G0)
4: z ← G0

5: while Q is not empty do
6: N ← search node popped from Q
7: Solve the linear relaxation of N , denoted Nr, and

store the result in z∗

8: U ← f(z∗)
9: if Nr was feasible and U > L then

10: if z∗ obeys all integrality constraints, defining a
valid graph G∗ then

11: z ← z∗

12: L← f(G∗)
13: else
14: v ← An integer variable with a non-integral

value z∗v in z∗

15: Add N ∪ {v ≤ ⌊z∗v⌋} and N ∪ {v ≥ ⌈z∗v⌉} to
Q

16: end if
17: else
18: Prune the entire subtree rooted at N by continuing

to the next iteration without adding any nodes to
Q

19: end if
20: end while
21: return z

We start by finding the optimal solution of the LP relaxation
(i.e. the MIP with the integrality constraints removed) of
the MIP problem, for example using the simplex method
(line 7). This is an optimal solution to a problem with fewer

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2024

constraints, so it serves as an upper bound to the original
problem with integer domains for some decision variables.
If it happens to also be a solution to the original MIP, mean-
ing all the variables are integral, then the correctness of the
algorithm for solving the relaxation guarantees that this is
an optimal solution to our MIP, and we can stop searching
(lines 10-12).

If some integral decision variables take fractional values in
the relaxation, we branch on one of them by partitioning
the set of candidate solutions for the problem with integer
constraints into 2 subproblems, one with the extra constraint
that a chosen fractional variable is at most the floor of its
value in the LP relaxation’s optimum and another ensuring
that the variable at least the ceiling of that value (lines 14-
15). The optimal solution to the integral problem will be
the maximum optimal solution of these two subproblems,
which can be solved recursively in the same way, leading to
a binary tree in which nodes represent further constrained
versions of the original MIP. While an upper bound for an
internal node (U in the pseudocode) only applies to the
subtree rooted at that node, any integer solution serves as a
lower bound (L in the pseudocode) to the integral problem’s
optimum anywhere in the search tree.

Integer solutions can be found in the leaves of our search
tree, or using heuristics to complete partial solutions de-
fined at internal nodes. If the linear relaxation solved at
an internal node is infeasible or has a maximum objective
value that is lower than or equal to our current lower bound,
we have proven that a new optimal solution to the integral
problem cannot lie anywhere in the subtree rooted at that
node, allowing us to prune the branch and skip all the nodes
it contains in our search (line 18). The process stops when
there are no more subproblems to explore, at which point we
will have found an optimal solution to the integral problem.
In our experiments, we use Gurobi Optimizer (Gurobi Opti-
mization, LLC, 2023) to find an optimal solution efficiently.
This solver combines branch-and-bound with cutting plane
methods, which makes the optimization process even faster.
While the theoretical complexity of this algorithm is ex-
ponential, the average complexity is significantly lower in
practice, making it tractable to apply in many situations.

A single, large number M can be used to bound all of the
continuous decision variables, but tighter bounds greatly
reduce the time needed to compute optimal solutions. While
automated bound-tightening procedures exist, it is faster to
use knowledge of the problem to bound manually. Each
hidden representation computed by the model is encoded
by a separate set of decision variables. Assuming we have
bounded the decision variables for one, we can compute
bounds for the outputs of a following transformation. For
example, given a hidden representation vector x with lower
bound xL and upper bound xU , we can get upper and lower

bounds on the output of a linear layer x′ = Wx+ b:

x′
L = ReLU(W)xL + ReLU(−W)xU + b; (16)

x′
U = ReLU(W)xU + ReLU(−W)xL + b. (17)

Given bounds on the the decision variables representing the
explanation graph, the input to the GNN, we can follow the
propagation of values through the GNN to iteratively bound
the set of decision variables for each hidden representation.
Bounds for the outputs of ReLU activation layers will be
the same as their inputs, but clipped below at 0. In the case
of layers like GraphSAGE convolutions where the output
is the sum of several matrix multiplications, bounds can be
derived for each term in the sum and then added together.

Further discussion on the practical considerations of solving
these MIPs can be found in Appendix Section C.

3. Experiments
We use two synthetic datasets and one real-world dataset to
evaluate our method: Is Acyclic, Shapes, and MUTAG. The
Is Acyclic dataset comes from XGNN’s experiments, and
has two classes consisting of cyclic and acyclic graphs of
various types. The cyclic graphs include graphs like grids,
single cycles, and wheels, while the acyclic class includes
graphs like paths and various types of trees. Every node is
given the same feature, a single constant, in order to iso-
late the explanation methods’ ability to capture structural
information. For the Shapes dataset, which comes from GN-
NInterpreter’s experiments, graphs are first generated from
one of 5 base classes: lollipop graphs contain a fully con-
nected component with one connection to a path graph’s end
node, grid graphs are lattices where each internal node has 4
neighbors, star graphs have multiple outer nodes connected
to a single central node, and wheel graphs are star graphs
with a single cycle connecting the outer nodes. For each
of these graphs, a uniform proportion between 0 and 0.2 is
chosen, and the number of edges in the graph is increased
by that amount by adding in edges uniformly at random.
The features of each node are the same as in Is Acyclic. The
MUTAG dataset (Debnath et al., 1991) consists of graphs
of chemical compounds, where nodes represent atoms and
edges represent bonds between them. Each compound is
classified as being either mutagenic or non-mutagenic. As
described by the creators of this dataset and in (Hsu et al.,
2016), mutagenic molecules tend to have higher numbers of
fused rings of carbon atoms. For this dataset, each node’s
features are a one-hot vector indicating atom type.

To quantify the variation between explanation graphs, we
run repeated experiments with each explanation method and
measure the average graph edit distance between all pairs
of explanations. Graph edit distance, as described in (San-
feliu & Fu, 1983a), is the minimum number of graph edit
operations (vertex/edge insertions/deletions/substitutions)

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2024

of # of Average Average # of Node
Graphs Classes # of Nodes # of Edges Features

Is Acyclic 533 2 28.5 68.1 1
Shapes 8000 5 27.2 144.9 1
MUTAG 188 2 17.9 39.6 7

Table 1. Dataset Summary

Train Accuracy Test Accuracy # of Model Parameters

Is Acyclic 0.998 1.000 730
Shapes 0.991 0.993 757
MUTAG 0.893 0.895 5770

Table 2. Performance Metrics of Trained GNNs
needed to transform one graph into another. A lower average
graph edit distance indicates a more consistent explanation
method.
3.1. Experimental Setup

Every dataset was randomly split into a training set (80%)
and a test set (20%). GNNs were trained on each, and perfor-
mance metrics are reported in Table 2. For the experiments
with XGNN, we used the implementation provided by the
authors in DIG2 (Liu et al., 2021). For the experiments with
GNNInterpreter, we also use the implementation provided
by the authors3. We used default sets of hyperparameters
provided in the papers and implementations of the baselines.
An exception was made for XGNN because the default reg-
ularization weights sometimes caused the graph generator
to quickly learn a policy that stopped after the first node
in several instances. To fix this, we increased the reward
for creating additional valid edges until it became favorable
for the model to generate reasonably sized explanations.
Additional details about the experiments can be found in
Appendix B. To measure the consistency of the explanations,
we generated explanations with 5,6,7, and 8 nodes using
each method on each dataset 5 times. Then, we computed
the average GED among the 5 explanations. Table 4 shows
these metrics averaged over the different numbers of nodes.
A full table containing separate results for each number
of nodes can be found in Appendix D. For MIPExplainer,
the initialization graph was created by starting with a path
graph and adding all other possible edges with probability
0.5. Variation in the baselines comes from the random ini-
tialization of the explanation network for XGNN and the
latent parameters in GNNInterpreter.

3.2. Results

The main results from our experiments are shown in Table 3.
Note that when depicting molecular graphs, the node colors
are assigned as follows: gray=C, blue=N, red=O, cyan=F,
purple=I, green=Cl, and brown=Br. In the experiments with
Is Acyclic, MIPExplainer explains the cyclic class with a

2https://github.com/divelab/DIG
3https://github.com/yolandalalala/

GNNInterpreter

complete graph, which has the maximum possible number
of cycles. It explains the acyclic class with a star graph,
which is one of the most straightforward examples from
the class. In contrast, the explanation graphs of XGNN
and GNNInterpreter for the cyclic class contain some nodes
with a single neighbor, and their explanations for the acyclic
class even include multiple cycles. Our solver was able to
prove the optimality of both classes, taking an average of
1.90 seconds for the cyclic class explanation and 119.14
seconds for the acyclic class explanation. The left plot in
Figure 5 shows how the bounds converged over the course of
the acyclic class experiment. This demonstrates how graph
symmetries factor into MIPExplainer’s runtime, we further
discuss this problem in Appendix C. A fully connected
graph with equal node features only has a single adjacency
matrix and feature matrix representation, while a star graph
with n nodes has n representations, as there are n options for
the position of the central node in the node ordering. As a
result, despite the solution having the same number of nodes
and fewer edges, more of the search tree must be explored
to prove the optimality of the acyclic explanation. Figure
5 shows the convergence of the objective bounds and the
number of explored and unexplored search nodes over the
course of the search for the optimal solution. Similar figures
for more experimental settings can be found in Appendix D.

For the mutagenic class of the MUTAG dataset, the MIPEx-
plainer produces a complete graph of carbon atoms. While
the presence of carbon cycles are an important factor in the
mutagenicity of organic molecules, they appear exclusively
as rings of 5 or 6 carbon atoms. Neither of the explanations
generated by the two baseline methods contained a cycle
of carbon atoms. The explanations of the non-mutagenic
class are not as reasonable across all methods, which is ex-
pected since non-mutagens are more accurately described
by the absence of mutagenic features than by the presence of
non-mutagenic features. The generated explanation mostly
consists of bromine atoms, which only actually appear in
2 of the graphs in the dataset. Despite the larger network
architecture, both these solutions were able to be verified as
optimal within the time limit.

For the Shapes dataset, we can easily recognize the classes
of each of the explanations generated by MIPExplainer. De-
spite the fact that a significant amount of noise was added to
the training data, the explanations are relatively clean. For
reference, three examples from the wheel class are shown
in Figure 2. In the cases of lollipops and stars, we see im-
portant features of the graph duplicated, a lollipop with two
ends and star with two centers. Because we chose a higher
number of nodes to make the patterns clearer, optimality
was not proven for these explanations, but they still appear
reasonable.

Table 4 shows that MIPExplainer was significantly more

7

https://github.com/divelab/DIG
https://github.com/yolandalalala/GNNInterpreter
https://github.com/yolandalalala/GNNInterpreter

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2024

Is Acyclic - Cyclic Is Acyclic - Acyclic MUTAG - Mutagenic MUTAG - Non-Mutagenic

Shapes - Lollipop Shapes - Wheel Shapes - Grid Shapes - Star

Table 3. Generated Explanations. The graphs from left to right are generated by MIPExplainer, XGNN, and GNNInterpreter, respectively

Figure 2. Three randomly selected wheel graphs from the Shapes
dataset

Figure 3. Solver metrics for 3 runs explaining the Acylcic class of
Is Acyclic with 7 nodes: On the left, the current best solution’s
objective (blue) and upper bound (red) converging to the same
global optimum (the dotted black line). On the right, the number
of explored (green)/unexplored (orange) nodes during the search.

consistent than the baseline methods in all experimental
settings. In some cases, small variations in explanations are
due to the existence of multiple explanation graphs with the
exact same objective value, which tended to be extremely
similar. In other cases, it was due to the algorithm running
out of time before finding the optimal solution. However,
this also rarely caused deviations, as the best solution was
generally found much earlier than it was proven to be op-
timal. For example, proving optimality for the MUTAG
dataset for an explanation graph with 8 nodes always took
longer than 30 minutes, but across all 5 runs with random
initializations, the algorithm consistently produced the same
explanation after 30 minutes. An extended table showing
separate consistency metrics for differently sized explana-
tions, as well as tables showing the output logits for the
explanation graphs and runtimes for each experiment, can
be found in Appendix D.

4. Conclusion and Discussion
Despite the ability of GNNs to model complex patterns in
graph-structured data, their lack of transparency remains one

Averaged Edit Distance
MIPExplainer GNNInterpreter XGNN

Dataset Class

Is Acyclic Acyclic 0.2 ± 0.40 3.5 ± 0.77 2.8 ± 1.62
Cyclic 0.0 ± 0.00 3.1 ± 1.05 3.2 ± 1.82

MUTAG Mutagen 0.7 ± 1.40 8.1 ± 1.19 7.8 ± 2.17
Nonmutagen 0.4 ± 0.80 7.8 ± 1.56 7.4 ± 2.39

Shapes Grid 0.0 ± 0.00 3.6 ± 0.89 3.0 ± 2.42
Lollipop 0.2 ± 0.40 3.5 ± 0.77 3.4 ± 2.03
Star 0.0 ± 0.00 3.9 ± 1.21 3.0 ± 2.60
Wheel 0.75 ± 0.90 3.3 ± 1.04 4.0 ± 3.32

Table 4. Average edit distance between 5 generated example
graphs, averaged for numbers of nodes between 5 and 8 inclu-
sive. Time limit is one half hour.
of the key factors hindering their application in a wide range
of domains. Model-level explanations of these networks
are key to understanding the information they learn and im-
proving their trust and reliability. In order to address key
shortcomings that limit the use of existing methods in most
real-world situations, this work proposes MIPExplainer for
generating such explanations. Without a way to objectively
evaluate their quality, it is essential that generated explana-
tions are truly high-quality solutions of optimization prob-
lems that are not sensitive to user-defined hyperparameters.
MIPExplainer achieves this by avoiding the use of both
weighted regularizers and stochastic optimization, instead
focusing on maximizing a simpler objective with determin-
istic methods that are able to prove the global optimality
of the generated solutions. Minimal assumptions are made
about the distributions of graphs and their features, and no
secondary models are trained in the process.

The proposed method also has several shortcomings, which
we hope to address in future work. While it is more general
than previous methods in some ways, it also requires differ-
ent GNN layers to be individually encoded with constraints,
and may require piecewise-linear approximations for highly
nonlinear components. From a practical perspective, the
runtime of MIPExplainer as described here is the most sig-
nificant drawback. Reducing symmetries in the encoding
can greatly improve runtime, but this is a hard problem in
general, and more work is required to understand which
symmetries are the most costly when optimizing over sets
of graphs. Despite these limitations, even before proving
optimality, we observe that the proposed method is able to
find reasonable explanations.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2024

Impact Statement
Techniques for improving the explainability of deep neu-
ral networks have significant implications for safety and
transparency wherever this technology is applied. While the
method proposed in this work may be useful for elucidating
implicitly learned patterns and biases, it is not able to make
any guarantees about fairness or robustness, and should not
be included in the verification process necessary for the safe
deployment of deep learning models.

References
Ansari, N., Seidel, H.-P., and Babaei, V. Mixed integer

neural inverse design. ACM Transactions on Graphics,
41(4):151:1–151:14, July 2022. ISSN 0730-0301. doi:
10.1145/3528223.3530083. URL https://dl.acm.
org/doi/10.1145/3528223.3530083.

Azzolin, S., Longa, A., Barbiero, P., Liò, P., and Passerini,
A. Global Explainability of GNNs via Logic Combi-
nation of Learned Concepts. 2022. doi: 10.48550/
ARXIV.2210.07147. URL https://arxiv.org/
abs/2210.07147.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and
Misener, R. Efficient Verification of ReLU-Based Neural
Networks via Dependency Analysis. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(04):3291–
3299, April 2020. ISSN 2374-3468, 2159-5399. doi: 10.
1609/aaai.v34i04.5729. URL https://ojs.aaai.
org/index.php/AAAI/article/view/5729.

Cheon, M.-S. An outer-approximation guided optimiza-
tion approach for constrained neural network inverse
problems. Mathematical Programming: Series A and
B, 196(1-2):173–202, November 2022. ISSN 0025-
5610. doi: 10.1007/s10107-021-01653-y. URL https:
//doi.org/10.1007/s10107-021-01653-y.

Debnath, A. K., Lopez De Compadre, R. L., Debnath,
G., Shusterman, A. J., and Hansch, C. Structure-
activity relationship of mutagenic aromatic and het-
eroaromatic nitro compounds. Correlation with molec-
ular orbital energies and hydrophobicity. Journal
of Medicinal Chemistry, 34(2):786–797, February
1991. ISSN 0022-2623, 1520-4804. doi: 10.1021/
jm00106a046. URL https://pubs.acs.org/
doi/abs/10.1021/jm00106a046.

Fey, M. and Lenssen, J. E. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop
on Representation Learning on Graphs and Manifolds,
2019.

Gao, X., Xiao, B., Tao, D., and Li, X. A survey of graph edit

distance. Pattern Analysis and applications, 13:113–129,
2010.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Hamilton, W. L., Ying, R., and Leskovec, J. Induc-
tive Representation Learning on Large Graphs. June
2017. doi: 10.48550/arXiv.1706.02216. URL https:
//arxiv.org/abs/1706.02216v4.

Hsu, K.-H., Su, B.-H., Tu, Y.-S., Lin, O. A., and Tseng,
Y. J. Mutagenicity in a Molecule: Identification of
Core Structural Features of Mutagenicity Using a Scaf-
fold Analysis. PLOS ONE, 11(2):e0148900, Febru-
ary 2016. ISSN 1932-6203. doi: 10.1371/journal.
pone.0148900. URL https://dx.plos.org/10.
1371/journal.pone.0148900.

Kakkad, J., Jannu, J., Sharma, K., Aggarwal, C., and Medya,
S. A Survey on Explainability of Graph Neural Networks,
June 2023. URL http://arxiv.org/abs/2306.
01958. arXiv:2306.01958 [cs].

Kalvelagen, E. Multiplication of a continuous
and a binary variable, May 2008. URL http:
//yetanothermathprogrammingconsultant.
blogspot.com/2008/05/
multiplication-of-continuous-and-binary.
html.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kipf, T. N. and Welling, M. Semi-Supervised Classifica-
tion with Graph Convolutional Networks. November
2016. URL https://openreview.net/forum?
id=SJU4ayYgl.

Lin, W., Lan, H., and Li, B. Generative causal explanations
for graph neural networks. In International Conference
on Machine Learning, pp. 6666–6679. PMLR, 2021.

Liu, M., Luo, Y., Wang, L., Xie, Y., Yuan, H., Gui, S., Xu,
Z., Yu, H., Zhang, J., Liu, Y., Yan, K., Oztekin, B., Liu,
H., Zhang, X., Fu, C., and Ji, S. DIG: A Turnkey Library
for Diving into Graph Deep Learning Research. arXiv
preprint arXiv:2103.12608, 2021.

Lucic, A., Ter Hoeve, M. A., Tolomei, G., De Rijke, M.,
and Silvestri, F. Cf-gnnexplainer: Counterfactual ex-
planations for graph neural networks. In International
Conference on Artificial Intelligence and Statistics, pp.
4499–4511. PMLR, 2022.

9

https://dl.acm.org/doi/10.1145/3528223.3530083
https://dl.acm.org/doi/10.1145/3528223.3530083
https://arxiv.org/abs/2210.07147
https://arxiv.org/abs/2210.07147
https://ojs.aaai.org/index.php/AAAI/article/view/5729
https://ojs.aaai.org/index.php/AAAI/article/view/5729
https://doi.org/10.1007/s10107-021-01653-y
https://doi.org/10.1007/s10107-021-01653-y
https://pubs.acs.org/doi/abs/10.1021/jm00106a046
https://pubs.acs.org/doi/abs/10.1021/jm00106a046
https://www.gurobi.com
https://arxiv.org/abs/1706.02216v4
https://arxiv.org/abs/1706.02216v4
https://dx.plos.org/10.1371/journal.pone.0148900
https://dx.plos.org/10.1371/journal.pone.0148900
http://arxiv.org/abs/2306.01958
http://arxiv.org/abs/2306.01958
http://yetanothermathprogrammingconsultant.blogspot.com/2008/05/multiplication-of-continuous-and-binary.html
http://yetanothermathprogrammingconsultant.blogspot.com/2008/05/multiplication-of-continuous-and-binary.html
http://yetanothermathprogrammingconsultant.blogspot.com/2008/05/multiplication-of-continuous-and-binary.html
http://yetanothermathprogrammingconsultant.blogspot.com/2008/05/multiplication-of-continuous-and-binary.html
http://yetanothermathprogrammingconsultant.blogspot.com/2008/05/multiplication-of-continuous-and-binary.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2024

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. Advances in neural information processing
systems, 33:19620–19631, 2020.

Magister, L. C., Kazhdan, D., Singh, V., and Liò, P. GC-
Explainer: Human-in-the-Loop Concept-based Explana-
tions for Graph Neural Networks. In Workshop on Hu-
man in the Loop Learning, volume 3. ICML, 2021. doi:
10.48550/ARXIV.2107.11889. URL https://arxiv.
org/abs/2107.11889.

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and
Hoffmann, H. Explainability methods for graph convolu-
tional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 10772–10781, 2019.

Saha, S., Das, M., and Bandyopadhyay, S. GraphEx: A
User-Centric Model-Level Explainer for Graph Neural
Networks. In Maughan, K., Liu, R., and Burns, T. F.
(eds.), The First Tiny Papers Track at ICLR 2023, Tiny Pa-
pers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. Open-
Review.net, 2023a. URL https://openreview.
net/pdf?id=CuE1F1M0_yR.

Saha, S., Das, M., and Bandyopadhyay, S. GraphEx:
A User-Centric Model-Level Explainer for Graph Neu-
ral Networks. March 2023b. URL https://
openreview.net/forum?id=CuE1F1M0_yR.

Sanfeliu, A. and Fu, K.-S. A distance measure between
attributed relational graphs for pattern recognition. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13
(3):353–362, 1983a. doi: 10.1109/TSMC.1983.6313167.

Sanfeliu, A. and Fu, K.-S. A distance measure between
attributed relational graphs for pattern recognition. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13
(3):353–362, May 1983b. ISSN 0018-9472, 2168-2909.
doi: 10.1109/TSMC.1983.6313167. URL http://
ieeexplore.ieee.org/document/6313167/.

Schlichtkrull, M. S., De Cao, N., and Titov, I. Interpreting
graph neural networks for nlp with differentiable edge
masking. arXiv preprint arXiv:2010.00577, Proceedings
of International Conference on Learning Representations,
2020.

Schnake, T., Eberle, O., Lederer, J., Nakajima, S., Schütt,
K. T., Müller, K.-R., and Montavon, G. Higher-order
explanations of graph neural networks via relevant walks.
IEEE transactions on pattern analysis and machine intel-
ligence, 44(11):7581–7596, 2021.

Shin, Y.-M., Kim, S.-W., and Shin, W.-Y. PAGE: Prototype-
Based Model-Level Explanations for Graph Neural Net-
works. 2022. doi: 10.48550/ARXIV.2210.17159. URL
https://arxiv.org/abs/2210.17159.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph Attention Networks. 2017. doi:
10.48550/ARXIV.1710.10903. URL https://arxiv.
org/abs/1710.10903.

Vu, M. and Thai, M. T. Pgm-explainer: Probabilistic graph-
ical model explanations for graph neural networks. Ad-
vances in neural information processing systems, 33:
12225–12235, 2020.

Wang, X. and Shen, H.-W. GNNInterpreter: A Probabilistic
Generative Model-Level Explanation for Graph Neural
Networks. 2022. doi: 10.48550/ARXIV.2209.07924.
URL https://arxiv.org/abs/2209.07924.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
Powerful are Graph Neural Networks? 2018. doi:
10.48550/ARXIV.1810.00826. URL https://arxiv.
org/abs/1810.00826.

Xuanyuan, H., Barbiero, P., Georgiev, D., Magister,
L. C., and Liò, P. Global concept-based interpretabil-
ity for graph neural networks via neuron analysis.
In Proceedings of the Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence and Thirty-Fifth Con-
ference on Innovative Applications of Artificial In-
telligence and Thirteenth Symposium on Educational
Advances in Artificial Intelligence, volume 37 of
AAAI’23/IAAI’23/EAAI’23, pp. 10675–10683. AAAI
Press, February 2023. ISBN 9781577358800. doi:
10.1609/aaai.v37i9.26267. URL https://doi.org/
10.1609/aaai.v37i9.26267.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
Gnnexplainer: Generating explanations for graph neural
networks. Advances in neural information processing
systems, 32, 2019.

Yu, J., Xu, T., Rong, Y., Bian, Y., Huang, J., and He, R.
Graph Information Bottleneck for Subgraph Recognition.
October 2020. URL https://openreview.net/
forum?id=bM4Iqfg8M2k.

Yuan, H., Tang, J., Hu, X., and Ji, S. XGNN: Towards
Model-Level Explanations of Graph Neural Networks.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pp. 430–438, Virtual Event CA USA, August 2020.
ACM. ISBN 9781450379984. doi: 10.1145/3394486.
3403085. URL https://dl.acm.org/doi/10.
1145/3394486.3403085.

10

https://arxiv.org/abs/2107.11889
https://arxiv.org/abs/2107.11889
https://openreview.net/pdf?id=CuE1F1M0_yR
https://openreview.net/pdf?id=CuE1F1M0_yR
https://openreview.net/forum?id=CuE1F1M0_yR
https://openreview.net/forum?id=CuE1F1M0_yR
http://ieeexplore.ieee.org/document/6313167/
http://ieeexplore.ieee.org/document/6313167/
https://arxiv.org/abs/2210.17159
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2209.07924
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://doi.org/10.1609/aaai.v37i9.26267
https://doi.org/10.1609/aaai.v37i9.26267
https://openreview.net/forum?id=bM4Iqfg8M2k
https://openreview.net/forum?id=bM4Iqfg8M2k
https://dl.acm.org/doi/10.1145/3394486.3403085
https://dl.acm.org/doi/10.1145/3394486.3403085

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2024

Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. On explainabil-
ity of graph neural networks via subgraph explorations. In
International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Yuan, H., Yu, H., Gui, S., and Ji, S. Explainability in Graph
Neural Networks: A Taxonomic Survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45(5):
5782–5799, May 2023. ISSN 1939-3539. doi: 10.1109/
TPAMI.2022.3204236. URL https://ieeexplore.
ieee.org/abstract/document/9875989.

Zhang, Z., Liu, Q., Wang, H., Lu, C., and Lee, C.
ProtGNN: Towards Self-Explaining Graph Neural Net-
works. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(8):9127–9135, June 2022.
ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v36i8.
20898. URL https://ojs.aaai.org/index.
php/AAAI/article/view/20898.

11

https://ieeexplore.ieee.org/abstract/document/9875989
https://ieeexplore.ieee.org/abstract/document/9875989
https://ojs.aaai.org/index.php/AAAI/article/view/20898
https://ojs.aaai.org/index.php/AAAI/article/view/20898

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2024

A. Regularization Terms
Following the paradigm established by existing methods, an objective function for explanations typically contains two parts:
a term related to class prediction and a regularizer that enforces the generated explanations to be in-distribution. In XGNN,
the explanation generator is penalized during training for actions that violate manually-defined sets of rules, such as the
maximum number of bonds that can be formed with a certain atom in a molecule. In GNNInterpreter, the embedding of
the explanation graph needs to be close to the average embedding of graphs in the training set. While these regularization
strategies may help confine the explanation graph to a region of the input space where the model is well-defined, they
cannot guarantee the quality of the explanation. While regularization terms can normally be balanced through some
tuning procedure, this is impossible without knowing the ground-truth explanations for the GNN already, and attempting
to determine the weights by judging the generated graphs qualitatively increases the likelihood of mistakenly accepting
spurious explanations. Therefore, we do not apply any regularization in the objective function during our experiments, but
the proposed method is able to incorporate commonly used regularizers if desired.

B. Experimental Setup
In all experiments, the GNNs use GraphSAGE-style convolutions with sum being used as the aggregation operator, followed
by a global mean pooling layer, and finally several fully-connected (FC) layers. ReLU activations are placed between each
hidden layer. For the Is Acyclic and Shapes datasets, the GNN uses 2 convolutional layers computing 16 features per node,
a FC layer computing 8 features, and a final FC layer to compute the class logits. For the MUTAG dataset, the GNN uses 2
convolutional layers computing 64 and 32 features per node, two FC layers computing 16 and 8 features per graph, and
a final FC layer to compute the logits. We implemented these GNNs using PyTorch-Geometric (Fey & Lenssen, 2019).
Models were trained for 200 epochs, optimizing with Adam (Kingma & Ba, 2015) with a learning rate of 10−3 and L2
regularization with weight 10−4.

For the MUTAG dataset, XGNN’s graph generator policy network was penalized when it violated valence constraints while
generating molecules, and no penalties were used on the other datasets. In the experiments with MIPExplainer, adjacency
matrices were constrained to be symmetric to represent undirected connected graphs without self-loops. For the MUTAG
dataset, node features were constrained to one-hot vectors by ensuring the sum of the elements in each row added up to
1. Any experiments lasting longer than 6 hours were automatically terminated, and we report the best solution found. To
ensure that any resemblance to target classes would not come from an initial solution, all runs for our method in 3 were
initialized with a path graph of n nodes. On the other hand, to test consistency, runs for MIPExplainer were initialized with
a graph generated by adding every possible edge to a line graph with probability 0.5.

C. Practical Considerations
In practice, it can be difficult to solve MIPs corresponding to large GNNs, and several techniques are needed to make the
process tractable. Often, just finding an initial setting for all of the decision variables that satisfies all constraints is difficult.
In our experiments, we found that this step can actually take longer than the subsequent optimization. This problem can be
completely eliminated with a warm start. Starting from an arbitrary input graph (either from the dataset or not), we can
compute a forward pass through the network to obtain a valid setting of initial values for almost all of the decision variables.
In cases where additional constraints have been imposed on the graph, such as to ensure connectivity as described above, an
input graph must be converted into the canonical form that also satisfies these constraints.

Floating-point precision errors can lead to serious problems for MIQP solvers, and in cases where decision variables can take
both small and large values, a significant amount of time may be needed to avoid numerical instability. This is relevant when
the weights of GNNs become very small, an effect often produced by regularization. However, we found that weights below
a certain threshold (we chose 10−5) could be floored to zero without significantly affecting the behavior of the network. All
performance metrics for the networks used in the experiments were computed after the networks were pruned in this way.
We also found that smoothing networks with regularization improved solution times.

Despite these measures, runtime remains the most significant drawback of the proposed approach. In our largest experiments,
we were not able to guarantee a global optimum within a single day. However, the largest reason for this runtime is the
amount of symmetry in our formulation. A single graph corresponds to a number of adjacency matrices that, in the worst
case, grows exponentially with the number of vertices it contains. This hinders our ability to tighten the upper bound while
exploring the search tree, since an existing global optimum may be transformed into another as we traverse a branch. In the

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2024

future, we plan to address this problem by introducing additional constraints to reduce the number of feasible adjacency
matrices in each equivalence class defined by graph isomorphism. Despite the increased time needed to prove optimality,
the proposed method often finds optimal solutions early in the search. Therefore, we impose a time limit during experiments
to prove its practicality.

D. Extended Results

Figure 4. Improving solutions found while optimizing the explanation for the Wheel class from the Shapes dataset

Average Edit Distance
MIPExplainer GNNInterpreter XGNN

Dataset Class # Nodes

Is Acyclic Acyclic 5 0.000 ± 0.000 3.000 ± 1.549 0.600 ± 0.490
6 0.000 ± 0.000 3.200 ± 1.077 2.400 ± 1.200
7 0.800 ± 0.980 3.000 ± 1.000 4.000 ± 1.414
8 0.000 ± 0.000 4.600 ± 1.020 4.000 ± 0.775

Cyclic 5 0.000 ± 0.000 2.600 ± 1.428 1.200 ± 0.600
6 0.000 ± 0.000 2.200 ± 1.249 2.800 ± 1.077
7 0.000 ± 0.000 3.000 ± 1.000 3.400 ± 1.744
8 0.000 ± 0.000 4.600 ± 1.020 5.600 ± 1.497

MUTAG Mutagen 5 0.000 ± 0.000 7.000 ± 1.483 5.200 ± 1.327
6 0.000 ± 0.000 7.300 ± 1.616 7.000 ± 1.414
7 2.800 ± 3.429 8.500 ± 1.285 8.500 ± 1.500
8 0.000 ± 0.000 9.600 ± 2.458 10.300 ± 1.345

Nonmutagen 5 0.000 ± 0.000 5.800 ± 1.327 4.600 ± 1.428
6 0.000 ± 0.000 7.500 ± 1.204 7.000 ± 1.549
7 1.600 ± 1.960 8.400 ± 1.428 7.700 ± 0.781
8 0.000 ± 0.000 9.500 ± 1.025 10.400 ± 2.107

Shapes Grid 5 0.000 ± 0.000 4.400 ± 2.107 1.200 ± 0.748
6 0.000 ± 0.000 2.600 ± 0.917 1.000 ± 0.632
7 0.000 ± 0.000 3.000 ± 0.894 3.400 ± 1.855
8 0.000 ± 0.000 4.200 ± 0.872 6.200 ± 2.441

Lollipop 5 0.000 ± 0.000 2.800 ± 1.249 1.600 ± 1.428
6 0.800 ± 0.980 3.000 ± 0.894 2.000 ± 0.894
7 0.000 ± 0.000 4.000 ± 1.000 4.000 ± 1.000
8 0.000 ± 0.000 4.400 ± 1.356 6.000 ± 2.145

Star 5 0.000 ± 0.000 5.200 ± 2.272 1.200 ± 0.980
6 0.000 ± 0.000 2.600 ± 0.663 1.000 ± 0.632
7 0.000 ± 0.000 3.200 ± 0.748 3.400 ± 1.200
8 0.000 ± 0.000 4.600 ± 1.356 6.600 ± 3.611

Wheel 5 0.000 ± 0.000 1.800 ± 0.980 0.600 ± 0.490
6 0.000 ± 0.000 4.000 ± 1.183 2.000 ± 0.775
7 1.200 ± 0.600 3.400 ± 1.428 5.200 ± 2.750
8 1.800 ± 0.600 4.000 ± 0.894 8.000 ± 3.924

Table 5. Average edit distance between 5 generated example graphs. The time limit was one half hour for all experiments.
MIPExplainer had the lowest average edit distance in all experiments.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2024

Figure 5. Solver metrics for 5 runs explaining the Mutagen class of MUTAG (Top) and the Acyclic class of Is Acyclic (bottom) with 5
nodes: On the left, the current best solution’s objective (blue) and upper bound (red) converging to the same global optimum (the dotted
black line). On the right, the number of explored (green)/unexplored (orange) nodes during the search.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2024

Runtime
MIPExplainer GNNInterpreter XGNN

Dataset Class # Nodes

Is Acyclic Acyclic 5 3.965 ± 0.313 7.610 ± 0.015 10.040 ± 0.135
6 13.752 ± 0.767 7.626 ± 0.022 13.482 ± 0.528
7 119.144 ± 19.283 7.679 ± 0.054 15.419 ± 0.561
8 919.366 ± 387.422 7.684 ± 0.013 17.265 ± 0.479

Cyclic 5 1.701 ± 0.356 0.027 ± 0.008 9.842 ± 0.057
6 1.781 ± 0.521 0.024 ± 0.000 12.877 ± 0.482
7 1.902 ± 0.102 0.030 ± 0.003 15.257 ± 0.377
8 1.945 ± 0.098 0.115 ± 0.051 18.216 ± 1.273

MUTAG Mutagen 5 312.586 ± 120.643 0.024 ± 0.001 8.701 ± 0.455
6 901.010 ± 82.795 0.025 ± 0.004 10.305 ± 0.297
7 1157.387 ± 386.822 0.060 ± 0.060 12.069 ± 0.257
8 3031.742 ± 288.508 0.114 ± 0.007 14.727 ± 0.619

Nonmutagen 5 1916.024 ± 753.053 5.633 ± 5.109 8.747 ± 0.530
6 7201.688 ± 0.890 7.599 ± 4.213 10.403 ± 0.342
7 7201.532 ± 0.087 9.659 ± 0.049 12.595 ± 0.731
8 7201.842 ± 0.122 7.857 ± 4.304 13.946 ± 0.429

Shapes Grid 5 4.964 ± 1.060 7.563 ± 0.018 11.644 ± 0.196
6 17.508 ± 3.246 7.614 ± 0.040 14.964 ± 0.151
7 92.649 ± 19.726 7.648 ± 0.022 17.817 ± 0.149
8 1886.365 ± 537.301 7.667 ± 0.007 20.497 ± 0.735

Lollipop 5 7.560 ± 1.296 7.631 ± 0.016 11.543 ± 0.102
6 60.700 ± 4.313 7.634 ± 0.013 15.048 ± 0.410
7 172.511 ± 44.716 7.661 ± 0.019 17.934 ± 0.370
8 4261.094 ± 2267.636 7.705 ± 0.027 19.852 ± 0.355

Star 5 4.050 ± 0.711 7.560 ± 0.014 11.512 ± 0.173
6 18.200 ± 2.062 7.592 ± 0.007 14.955 ± 0.279
7 176.005 ± 113.007 7.624 ± 0.014 17.942 ± 0.440
8 260.384 ± 40.326 7.659 ± 0.016 19.931 ± 0.673

Wheel 5 4.256 ± 1.225 7.716 ± 0.255 11.550 ± 0.043
6 107.301 ± 134.613 7.641 ± 0.010 15.507 ± 0.763
7 103.210 ± 8.210 7.652 ± 0.010 18.047 ± 0.395
8 5576.961 ± 1071.344 7.706 ± 0.051 20.095 ± 0.387

Table 6. Runtime of explanation methods given a time limit of 2 hours, averaged over 5 runs

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2024

Is Acyclic Output Logits
MIPExplainer GNNInterpreter XGNN

Class # Nodes

Acyclic 5 Cyclic Logit -8.981 ± 0.000 -1.343 ± 4.048 6.417 ± 0.709
Acyclic Logit 11.896 ± 0.000 1.835 ± 5.022 -7.456 ± 0.800

6 Cyclic Logit -9.722 ± 0.000 1.452 ± 4.292 7.333 ± 1.891
Acyclic Logit 12.932 ± 0.000 -1.577 ± 5.222 -8.490 ± 2.134

7 Cyclic Logit -9.184 ± 2.476 4.607 ± 1.646 6.520 ± 1.742
Acyclic Logit 12.247 ± 3.341 -5.415 ± 1.857 -7.573 ± 1.965

8 Cyclic Logit -10.754 ± 0.000 4.924 ± 1.633 6.372 ± 1.884
Acyclic Logit 14.409 ± 0.000 -5.771 ± 1.843 -7.400 ± 2.131

Cyclic 5 Cyclic Logit 7.194 ± 0.000 -5.769 ± 2.112 5.665 ± 1.055
Acyclic Logit -8.333 ± 0.000 7.516 ± 2.844 -6.609 ± 1.191

6 Cyclic Logit 10.260 ± 0.000 0.200 ± 4.304 6.997 ± 2.119
Acyclic Logit -11.793 ± 0.000 -0.080 ± 5.363 -8.111 ± 2.391

7 Cyclic Logit 13.488 ± 0.000 -0.293 ± 1.360 7.080 ± 1.031
Acyclic Logit -15.436 ± 0.000 0.524 ± 1.625 -8.205 ± 1.164

8 Cyclic Logit 16.870 ± 0.000 4.585 ± 1.148 7.587 ± 1.127
Acyclic Logit -19.184 ± 0.000 -5.328 ± 1.362 -8.777 ± 1.271

Table 7. Logits for Is Acyclic explanation graphs generated by MIPExplainer, averaged over 5 runs with random initial
solutions

MUTAG Output Logits
MIPExplainer GNNInterpreter XGNN

Class # Nodes

Mutagen 5 Nonmutagen Output Logit -19.249 ± 0.000 -0.422 ± 5.318 3.825 ± 5.060
Mutagen Output Logit 11.269 ± 0.000 4.048 ± 7.581 -0.041 ± 5.502

6 Nonmutagen Output Logit -30.439 ± 0.000 -7.649 ± 7.386 -1.738 ± 8.144
Mutagen Output Logit 17.673 ± 0.000 18.074 ± 13.474 7.321 ± 8.283

7 Nonmutagen Output Logit -43.654 ± 0.000 -9.854 ± 13.851 -1.755 ± 3.123
Mutagen Output Logit 25.229 ± 0.000 20.275 ± 23.446 4.828 ± 6.009

8 Nonmutagen Output Logit -59.041 ± 0.000 -21.218 ± 12.229 -1.859 ± 5.728
Mutagen Output Logit 34.029 ± 0.000 41.498 ± 19.722 5.446 ± 7.365

Nonmutagen 5 Nonmutagen Output Logit 6.691 ± 0.000 1.887 ± 4.245 -3.481 ± 1.849
Mutagen Output Logit -7.612 ± 0.000 -0.107 ± 5.117 8.834 ± 2.699

6 Nonmutagen Output Logit 6.830 ± 0.000 7.146 ± 8.787 2.359 ± 3.898
Mutagen Output Logit -7.779 ± 0.000 -0.851 ± 6.609 1.204 ± 6.986

7 Nonmutagen Output Logit 7.185 ± 0.098 -3.194 ± 7.405 -0.841 ± 6.120
Mutagen Output Logit -8.174 ± 0.102 10.138 ± 9.418 3.811 ± 8.576

8 Nonmutagen Output Logit 7.236 ± 0.000 -5.436 ± 10.869 -9.350 ± 15.218
Mutagen Output Logit -8.251 ± 0.000 13.410 ± 16.078 19.037 ± 22.654

Table 8. Logits for MUTAG explanation graphs generated by MIPExplainer, averaged over 5 runs with random initial
solutions

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2024

Shapes Output Logits (1)
MIPExplainer GNNInterpreter XGNN

Class # Nodes

Grid 5 Lollipop Logit -1.343 ± 0.000 -10.019 ± 6.822 -5.121 ± 1.118
Wheel Logit -19.762 ± 0.000 -38.818 ± 40.875 3.259 ± 6.784
Grid Logit 9.577 ± 0.000 -8.103 ± 23.501 8.262 ± 0.688
Star Logit -20.261 ± 0.000 -14.756 ± 18.554 -31.471 ± 4.109

6 Lollipop Logit -0.846 ± 0.000 -3.386 ± 3.512 -4.907 ± 1.180
Wheel Logit -1.949 ± 0.000 -21.545 ± 11.607 5.398 ± 3.124
Grid Logit 9.154 ± 0.000 -6.520 ± 11.184 4.816 ± 2.687
Star Logit -31.297 ± 0.000 -17.602 ± 8.887 -30.366 ± 3.257

7 Lollipop Logit -1.269 ± 0.000 -2.233 ± 2.319 -1.976 ± 0.763
Wheel Logit -11.014 ± 0.000 -5.299 ± 5.715 -4.893 ± 2.458
Grid Logit 9.972 ± 0.000 3.110 ± 3.284 -1.793 ± 7.365
Star Logit -25.884 ± 0.000 -23.110 ± 2.283 -21.878 ± 3.027

8 Lollipop Logit -1.502 ± 0.000 -2.884 ± 3.272 -2.444 ± 1.782
Wheel Logit -8.745 ± 0.000 -11.408 ± 6.947 -5.672 ± 8.371
Grid Logit 9.270 ± 0.000 1.346 ± 5.852 -7.951 ± 13.444
Star Logit -26.275 ± 0.000 -19.579 ± 3.193 -19.534 ± 7.940

Lollipop 5 Lollipop Logit -2.791 ± 0.000 -8.329 ± 8.233 -5.837 ± 0.697
Wheel Logit -25.569 ± 0.000 -47.927 ± 27.593 -0.149 ± 22.146
Grid Logit -5.128 ± 0.000 -15.098 ± 19.693 3.951 ± 10.263
Star Logit -19.403 ± 0.000 -9.227 ± 13.375 -30.313 ± 12.808

6 Lollipop Logit 1.103 ± 1.065 -3.452 ± 3.391 -2.709 ± 1.291
Wheel Logit -17.920 ± 8.127 -22.403 ± 11.090 -1.503 ± 3.706
Grid Logit -7.984 ± 8.479 -3.795 ± 8.878 2.021 ± 0.575
Star Logit -18.629 ± 5.279 -15.728 ± 7.512 -25.136 ± 2.219

7 Lollipop Logit 2.700 ± 0.000 -3.375 ± 2.803 -3.732 ± 0.426
Wheel Logit -18.050 ± 0.000 -11.131 ± 14.287 -1.052 ± 5.294
Grid Logit -5.612 ± 0.000 -4.683 ± 8.943 1.356 ± 2.642
Star Logit -21.298 ± 0.000 -22.799 ± 8.634 -24.479 ± 4.387

8 Lollipop Logit 7.224 ± 0.000 -2.637 ± 1.622 -2.184 ± 3.039
Wheel Logit -15.080 ± 0.000 -19.483 ± 17.827 -13.259 ± 5.576
Grid Logit -3.129 ± 0.000 1.137 ± 6.363 -6.440 ± 5.380
Star Logit -19.795 ± 0.000 -18.262 ± 9.027 -14.606 ± 4.264

Table 9. Logits for explanation graphs generated by MIPExplainer for the ”Grid” and ”Lollipop” classes of the shapes dataset,
averaged over 5 runs with random initial solutions

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2024

Shapes Output Logits (2)
MIPExplainer GNNInterpreter XGNN

Class # Nodes

Star 5 Lollipop Logit -16.772 ± 0.000 -12.575 ± 12.292 -5.020 ± 1.008
Wheel Logit -67.715 ± 0.000 -42.824 ± 40.005 2.464 ± 5.862
Grid Logit -72.108 ± 0.000 -31.701 ± 46.376 7.990 ± 0.654
Star Logit 12.894 ± 0.000 -8.555 ± 20.510 -30.609 ± 2.926

6 Lollipop Logit -13.064 ± 0.000 -3.980 ± 2.651 -4.822 ± 1.125
Wheel Logit -64.317 ± 0.000 -21.691 ± 9.404 5.352 ± 3.101
Grid Logit -48.784 ± 0.000 -3.585 ± 12.975 4.037 ± 2.655
Star Logit 12.183 ± 0.000 -15.661 ± 2.185 -29.810 ± 3.144

7 Lollipop Logit -11.148 ± 0.000 -2.507 ± 2.511 -1.469 ± 2.153
Wheel Logit -61.412 ± 0.000 -22.296 ± 21.034 -9.213 ± 5.345
Grid Logit -33.850 ± 0.000 -3.210 ± 13.723 -6.549 ± 8.455
Star Logit 13.072 ± 0.000 -18.741 ± 8.891 -18.000 ± 4.776

8 Lollipop Logit -10.722 ± 0.000 -3.702 ± 1.427 -1.924 ± 1.894
Wheel Logit -58.630 ± 0.000 -7.587 ± 15.924 -8.287 ± 9.256
Grid Logit -23.479 ± 0.000 -1.624 ± 8.923 -11.054 ± 12.549
Star Logit 14.536 ± 0.000 -21.715 ± 8.531 -18.099 ± 8.888

Wheel 5 Lollipop Logit -6.180 ± 0.000 -7.290 ± 7.960 -5.957 ± 0.275
Wheel Logit 13.062 ± 0.000 -42.230 ± 28.326 8.335 ± 2.176
Grid Logit 10.323 ± 0.000 -3.870 ± 18.922 8.057 ± 0.745
Star Logit -40.319 ± 0.000 -12.452 ± 10.727 -34.470 ± 2.362

6 Lollipop Logit -5.616 ± 0.000 -4.918 ± 4.503 -3.865 ± 1.889
Wheel Logit 6.921 ± 0.000 -18.368 ± 31.653 1.860 ± 6.420
Grid Logit 2.541 ± 0.000 3.615 ± 6.467 3.038 ± 3.642
Star Logit -29.458 ± 0.000 -22.223 ± 14.202 -27.369 ± 5.667

7 Lollipop Logit -5.328 ± 0.402 -4.489 ± 2.121 -1.477 ± 4.376
Wheel Logit 7.040 ± 1.338 -5.192 ± 15.185 -8.111 ± 10.727
Grid Logit 2.960 ± 1.279 5.168 ± 3.163 -4.639 ± 12.694
Star Logit -29.519 ± 1.233 -24.700 ± 9.701 -20.903 ± 8.152

8 Lollipop Logit -4.147 ± 1.128 -2.193 ± 0.699 -1.513 ± 2.686
Wheel Logit 4.468 ± 3.188 -5.022 ± 6.210 -11.867 ± 4.893
Grid Logit 1.505 ± 0.752 -5.701 ± 13.464 -3.223 ± 12.412
Star Logit -27.293 ± 1.755 -20.266 ± 6.735 -17.747 ± 6.596

Table 10. Logits for explanation graphs generated by MIPExplainer for the ”Star” and ”Wheel” classes of the shapes dataset,
averaged over 5 runs with random initial solutions

18

